Spirick Tuning

A C++ Class and Template Library

for Performance Critical Applications

Reference Manual

OO

Version 1.49
Juni 2023

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Notice: Some parts of the documentation are under construction and incomplete.

Spirick Tuning Reference Manual Page 2

Table of Contents

1 MEMORY MANAGEMENT 6
1.7 System INterfacCe. et e eanas 6
1.1.1 Global Definitions (tuning/defs.hpp).....ccuiieiiii 6
1.1.2 Reserve Memory (tuning/sys/calloc.hpp)....ccooeiiiiiiiiii e 6
1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)......ccoeoniiiniii e 7
1.1.4 Heap Operations (tuning/sys/calloC.nPpp)....couieiieiiiiii e 8
1.1.5 Memory Operations (tuning/sys/cmemory.hpp).......oooeieiiiiii e 8
7 o - S 10
T.2.0 SOOI INtEr aC. et e 10
1.2.2 Global Stores (tuning/defs.NPP) ... 11
1.2.3 Wrapper Class EXamPle....ociuiiiiii ittt e e e e et ae e eaeeeaneeanes 12
1.3 DYNAMIC StOIS. .. ueueiniiiiii e taeee i raeaarara e s raraa s ran s ran s rananrananrarananrananrananrananennennen 13
1.3.1 Standard Store (tuning/std/store.NPP)couieeeii e 13
1.3.2 Round Store (tuning/rnd/store.npp) ...cecei i e 14
1.3.3 Chain Store (tuning/chn/store.NPP) e 15
1.3.4 Global new and delete operators (tuning/newdel.cpp).....cccovviiieiiiiiiiiiiiees 17
I 3 = o Yo P 18
T.4.71 BloCK INterfacCe. .. e s 18
1.4.2 Simple Block (tuning/bloCk.N)o 19
1.4.3 Mini Block (tuning/minibloCk.h)o 21
1.4.4 Reserve Block (tuning/resblock.h)o 22
1.4.5 Fixed Sized Block (tuning/fixblock.h) ..o 24
1.4.6 Null Data Block (tuning/nulldatablock.h)....... ..o 24
1.4.7 Character Block (tuning/charblock.h)...... ... 25
1.4.8 Item Block (tuning/itemblock.h)...... ..o 26
1.4.9 Page Block (tuning/pageblock.hpp) ..o 28
1.4.10 Block Instances (tuning/xxx/block.h).........ooo i 31
QST o =TT T IS o] =P 32
1.5.1 Block Store (tuning/blockstore.h).... ..o 32
1.5.2 Block Store Instances (tuning/xxx/blockstore.h)...........c.oooviiiiiiiiiiiiiee 33
1.5.3 Reference Counter (tuning/refcount.hpp)....co.veiieiiiiii e 34
1.5.4 Ref-Store (tuning/refstore.h)o 35
1.5.5 Ref-Store Instances (tuning/xxx/refstore.n).......c.cocoieiiiiiiii s 36
1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)..........ccoooiiiiiiiiiint, 37
1.5.7 Pack Store (tuning/packstore. npp).....cceiceiiiiii 38
1.5.8 Pack Store 2 (tuning/packstore.h)..........co.oiiiiiii e 40
2 OBJECT MANAGEMENT 41
bt B oY - 11 T PP 41
D20 I B O o =YL U= U (=T o - [41
2.7.2 CoNtainNer OPEIratioNS .. .c ittt ittt 45
2.1.3 Extended Container (tuning/extCont.h)......ccoiuiiiiiii e 46
2.2 Array and List CONtaiNersS..........ciuiiiniiii i e e e s s na s e e e e n e e e eans 50
2.2.1 Array Containers (tuning/array.h)o 50
2.2.2 Array Instances (tuning/XxXX/array.h).....ooooiiiiiii 51
2.2.3 List Containers (tuning/dlist.n) ... 52
2.2.4 List Instances (tuning/xXxXx/dlist.n) ... 53
bR B Yo Y ¢ =T o I o3 e 11 1= PN 54
2.3.1 Sorted Arrays (tUning/SOrtarr.n).o 54

Spirick Tuning Reference Manual Page 3

2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h).........ccoooiiiiiiiiiiiiiiiiiii 55

2.3.3 Hash Tables (tuning/hashtable.h) ... e 56
2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)...........cooiiiiiiiiiiiiii 57
2.4 Block and Ref Lists......cuiiiiiiiiiiiiiiiiiiaistiass i sasasaasaassasasaasaasaasansansansaasanneanneannennns 58
A g T = 1 1o Yo I = 58
2.4.2 Block List Instances (tuning/xxx/blockdlist.h)........ccoooiiiiiiii 58
2.4.3 Ref-Lists (tuning/refdlist.n)o 59
2.4.4 Ref-List Instances (tuning/xxx/refdlist.h) ... 60
2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)...........coooiiiiiii s 61
2.5 Comp, Pointer and IVIap CoNtaiNerS........ccvviiieiriiirirreraraerrarrnraransaraesnrasansasansnsanansnns 62
2.5.1 Comp-Containers (tuning/compcontainer.h)........ccoiiiiiiiiiiiiiiii e 62
2.5.2 Pointer Containers (tuning/ptrcontainer.h).......c.ciiiiiiiiiiiiiii e 64
2.5.3 Pointer Container OPerationS .. . ettt et e aea 70
2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h).........cccocoiiiiiiiiiiiiiiieinnnn. 71
2.5.5 Map Containers (tuning/mMap.h) .. .o e 74
2.5.6 Pointer Map Containers (tuning/ptrmap.h).....ccooieiiiiiiii e 77
2.6 Pointer Container INStanCeS. .. .c.uiuiiiiiiiiirae ettt ee e saa e saasaneaaneaaneaannranneaaneanns 81
2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h).......c.cooiiiiiiiiiiiic e 81
2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)..........cooiiiiiiii e 81
2.6.3 Pointer Sorted Array Instances (tuning/xxx/ptrsortedarray.h).........c.ccoooiiiiiiiinnen. 82
2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h)...............c.ooiiiiit. 83
2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)........c.ccoviiiiiiiiiiiiin. 84
2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h).........c.coooiiiii 84
2.6.7 Block-Ref Pointer List Instances (tuning/xxx/blockrefptrdlist.h).........c.c.cooiiiiiintn. 85
2.7 Overview of Container INStanCeS......c.ucviiiiiiiieiitiirr i siarira i raarasansasaaranranneaaneanns 86
2.7.1 Predefined Template INStanCES. . ..o.iuiiuii it e e aeeaas 86
2.7.2 User Defined Container Templates....o.uiuiiuiiiiiiiiii e e reeeae 87
b < T oY1 1Y o o 3 PP PS 87
2.8.1 Abstract Object (tuning/object.hpP)......ouieii 87
2.8.2 Abstract Collection (tuning/collection.hpp).....c.veiiiiiiiiiii e 88
AR S IR B 0o] | [=Yed o] g I O] oT=T - 1 4o Y o I F PP 89
2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp).....cccovviiiiiiiiiiiiiiiciie 91
2.8.5 Predefined ColleCtioNS. . .ciiii it e 91
3 STRINGS AND UTILITIES 93
B ISV =T o T [0 =Y - T S 93
3.1.1 Resource Errors (tuning/sys/Creserror.nNpp)...cccccoe i e 93
3.1.2 Character and String Conversion (tuning/sys/cstring.hpp).......ccoovieiiiiiiiiiiiiiinnn. 94
3.1.3 Unicode (UTF) (tuning/sys/Cutf.npp)....ccoiueiiiiii e 96
3.1.4 Unicode Const Iterator (tuning/utfcit.h) ... 97
3.1.5 Precision Time (tuning/sys/ctimedate.hpp)....cccvviiiiiiiiiii e 98
3.1.6 Time and Date (tuning/sys/ctimedate.npp)......cccooevriiiiiiiii e 99
3.1.7 CPU Time (tuning/sys/ctimedate.npp)......cccoouiiiiii e 99
3.1.8 Thread Utilities (tuning/sys/CProCesS.NPP) ...cu it 100
3.1.9 Threads (tuning/sys/cthread.Npp)oooniiii e 101
3.1.10 Processes (tuning/sys/CProCesSS.NPP) ... et e 101
3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp).....ccouiieiiiiii e 102
3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)....c.ccoovviiiiiiiiiiiiiiiiiiie, 103
3.1.13 Shared Resource (tuning/sys/csharedres.npp)......cccoceveiiiiiiiiiiiiiii e 104
3.1.14 Process Mutex (tuning/sys/cprmuteX.hpp).....ccieiiiiiiiiii e 104
3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)......cccoviviiiiiiiiiiiiiiiiiiinens 106
3.1.16 Shared Memory (tuning/sys/csharedmem.hpp).....ccoveeiiiiiiiiiic e 107
3.1.17 File /O (tuning/sys/Cfile.npP) ..cuieii e 109
3.1.18 Directory (tuning/sys/CAir.NPP) ... e 110
3.1.19 System-Related Information (tuning/sys/cinfo.hpp)......ccooiiiiiiiiiiiiiiii 110
3.2 Strings and Filenamees.coviiiiiiiiii i 113

Spirick Tuning Reference Manual Page 4

3.2.1 String Template (tuning/String.n) ... e 113

3.2.2 String Instances (tuning/xxx/[WIstring.h).......ccoiiiii 122
3.2.3 Polymorphic String Classes (tuning/[wlstring.hpp).....ccccooiiiiiiiiiie 122
3.2.4 Filename (tuning/filename.npp) 123
3.2.5 Formatted Strings (tuning/printf.nNpp)ccoe oo 128
3.2.6 String Sort Algorithm (tuning/stringsort.hpp)oocviiiii s 128
3.2.7 Number Sort Algorithm (tuning/stringsort.nNpp)......coveiiiii e 129
3.3 Files and DireCtOries.uuuiieiiiiiiiiii i e et e e e sa e s e sanranranranranranran e rannn 129
3.3.71 Files (tuniNg/fille. NP e e s 129
3.3.2 Directories (tuning/dir.npP) ... 132
3.3.3 Directory Scan (tuning/dirSCan. nPP)uieiiii i 133
3.4 Additional Utilities.coeieiiiiiii it r e e s e r e e s r e e e s n e e e nanaas 137
3.4.1 Time and Date (tuning/timedate.nPP).....c.eieiriiiiiiii e 137
3.4.2 MD5 Sum (tuning/MAdD . NpP) ... 139
3.4.3 Universally Unique Identifier (tuning/uuid.npp).....cccoovieiiiiiiiiiic e 140
4 DESIGN DIAGRAMS 142
Lt O 1 oY - 1 4 o o S 142
4.2 Polymorphic Class HIierarChy.........c.ooiiiiiiiiiiiiiiiii s r e re e e rn e e r e rnes 143
4.3 AN Array CoONtainNer.......ceiiiiiii et e e ean e s ransansan s ranran e ranranneaaneaannaanns 144
4.4 A Pointer Array CoONtaiNeT........ciuiieiiiiiii i e i i et raa et tanran e raaraneaanerantranns 146
G A N IR = G 010 31 - 13 - PP 148
4.6 A BIock List CONtaiNer......ccciiiiiiii i e e a s e e e e e e rannaanes 150
5 INSTALLATION 152
L I 13 1 211 F- o Y o 1 PP 152
5.1.7 Available Platforms. ..o 152
L Tt 7 0 T o 1= Vo [T o Yo 1= 152
BT 3 MAKE IS ettt 152
LT I € 1] o = I T o= e 152
B5.1.5 EXCeption Handling.....ociuii i e e 153

Spirick Tuning Reference Manual Page 5

1 MEMORY MANAGEMENT

1.1 System Interface

1.1.1 Global Definitions (tuning/defs.hpp)

In the file "tuning/defs.hpp’' compiler specific macros are evaluated and global data types and macros are
defined. This file is included from all other header files of the library. At the end of the file optionally the
file 'tl_user.hpp' is included. That way the behavior of the library can be changed without changing the

source code, e.g. the macro TL_ASSERT may be redefined.

Data Types
typedef ... t _Int;
typedef ... t Ulnt;
typedef ... t _Int8;
typedef ... t UInt8;
typedef ... t Intl6;
typedef ... t UIntlé;
typedef ... t Int32;
typedef ... t UInt32;

Numeric data types with a well-defined number of bits, signed or unsigned. The size of t Int and t _UInt
depends on the environment (32 or 64 bit).

1.1.2

Reserve Memory (tuning/sys/calloc.hpp)

With reserve memory the program can continue elementary operations in case of memory overflow. By
using the reserve memory, there is no need to test each memory allocation for success. Reserve
memory shall be allocated on program startup. If C standard library can't allocate any more memory,
reserve memory will be released by t1 Alloc and t1 Realloc. Afterwards, t1_HasReserve returns false.
Reserve memory management is protected against multiple thread access.

Memory Overflow

Many functions in the Spirick Tuning library allocate or reallocate memory. Within any function a memory
overflow can occur. Handling each occurrence will increase program code and computing time. However
memory overflows are very rare. The Spirick Tuning library is optimized for performance. Hence, memory
overflow is handled exclusively in the t1_Alloc and t1 Realloc functions. All other parts of the library
assume success on memory allocations.

A memory allocation or reallocation consists of the following steps: Try to allocate memory with C
standard library (malloc, realloc). If it fails free reserve memory and call C standard library again. If it
fails call overflow handler and call C standard library again. If it fails terminate the program with the
function t1_EndProcess. In the last case it makes no sense to continue. Every following operation will
probably fail because of lack of memory.

Spirick Tuning Reference Manual Page 6

Data Types
typedef void (* tpf AllocHandler) ();

Pointer to a gobal function taking no parameters and returning no value.

Functions

tpf_AllocHandler t1_SetReserveHandler (tpf AllocHandler pf allocHandler);
Sets new reserve handler and returns previous. Reserve handler is called if reserve memory is allocated,
reallocated or released.

tpf_AllocHandler t1_SetOverflowHandler (tpf AllocHandler pf_allocHandler);

Sets new overflow handler and returns previous. Overflow handler will be called if reserve memory is
released and C standard library can't allocate any more memory. Within the Spirick Tuning library
memory overflow is handled exclusively in the t1 _Alloc and t1 _Realloc functions. All other parts of the
library assume success on memory allocations. Hence, overflow handler must not throw C++
exceptions. Exceptions from overflow handler are not handled by the library and lead to inconsistent
objects.

void t1_SetReserveSize (t _UInt u_resSize):

Sets the size of the reserve memory to u_resSize. Afterwards, t1 _HasReserve returns true on success.

t UInt t1_GetReserveSize ();

Returns the size of the reserve memory, even if it is not allocated.

bool t1_HasReserve ();

Returns true if reserve memory is allocated.

void t1_FreeReserve ():

Frees reserve memory. Afterwards, t1_HasReserve returns false.

void t1_AlTocReserve ();

Tries to allocate reserve memory. Afterwards, t1_HasReserve returns true on success.

1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)

The system interface for memory allocations relies directly on C standard library. The global functions
malloc, realloc and free are used. Debugging tools and heap walkers of the C standard library can be
used together with the Spirick Tuning library. The functions t1 Alloc and t1 Realloc extend the C
standard library with reserve memory.

Functions
t UInt t1 StoreInfoSize ();

Returns the number of bytes for memory management per block. The value is used while calculating
rounded block sizes.

t UInt t1 MaxAlloc ();

Returns the maximum size of a contiguous memory block.

void * t1_Alloc (t UInt u_size);

Allocates a contiguous memory block of size u_size. Returns null pointer if u_size is zero. On memory
overflow reserve handler and overflow handler are called.

Spirick Tuning Reference Manual Page 7

void * t1_Realloc (void * pv_ptr, t UInt u_size);
Reallocates memory block pointed to by pv_ptr to size u_size. If pv_ptr is the null pointer, t1 Realloc is
identical to t1 Alloc. If u_size is zero, t1 _Realloc is identical to t1_Free. On memory overflow reserve
handler and overflow handler are called.

void t1_Free (void * pv_ptr);

Frees memory block pointed to by pv_ptr. pv_ptr may be the null pointer.

Appropriate Classes

The classes ct_StdStore, ct _RndStore and ct_ChnStore rely on the global functions of this section.

1.1.4 Heap Operations (tuning/sys/calloc.hpp)

Debugging tools and heap walkers are not standardized. Hence, the system interface contains selected
heap information only. The structure st HeapInfo contains information about the number and the size of
used and unused memory blocks. The number of unused memory blocks is a hint to memory
fragmentation. Note that some C++ compilers don't publish heap information, especially in release
mode.

Structure Declaration

struct st HeapInfo

{

unsigned long u_AllocEntries;
unsigned long u_Freekntries;
unsigned Tong u_AllocSize;
unsigned long u_FreeSize;
unsigned long u_HeapSize;
b

Functions

bool t1_QueryHeapInfo (st HeapInfo * pso_info);
Stores information about the actual heap state in the structure pointed to by pso_info. Return value false
is a hint to heap corruption.

bool t1 _FreeUnused ();

Tries to free unused memory blocks. Return value false is a hint to heap corruption.

1.1.6 Memory Operations (tuning/sys/cmemory.hpp)

The system interface for memory operations relies directly on C standard library. Global functions like
memcpy and memcmp are used. In addition, some special cases are handled, e.g. zero length parameters and
null pointers. All parameters are checked by ASSERT macros. Length parameters refer to the number of
characters, not to the size in bytes.

Spirick Tuning Reference Manual Page 8

Functions

void t1_CopyMemory (char * pc_dst, const char * pc_src, t UInt u_len);
void t1_CopyMemory (wchar t * pc_dst, const wchar_t * pc_src, t UInt u_len);

Copies u_len characters from pc_src to pc_dst. This function must not be used for overlapping memory
blocks.
void t1_MoveMemory (char * pc_dst, const char * pc_src, t UInt u_len);
void t1_MoveMemory (wchar t * pc_dst, const wchar_t * pc_src, t UInt u_len);
Copies u_len characters from pc_src to pc_dst. This function may be used for overlapping memory blocks.
char * t1_FillMemory (char * pc_dst, t UInt u_len, char c_fill);
wchar_t * t1_FillMemory (wchar_t * pc_dst, t UInt u_len, wchar_t c_fill);

Sets the first u_len characters of pc_dst to the character c_fill.

int t1_CompareChar (char cl, char c2);
int t1_CompareChar (wchar_t cl, wchar_t c2);

Compares the characters cl and c2 and returns a value indicating their relationship. The return value is
less than zero if cl < c2, equal to zero if c1 == c2, and greater than zero if c1 > c2. The characters are
compared as unsigned values.

int t1_CompareMemory (const char * pcl, const char * pc2, t UInt u_len);
int t1_CompareMemory (const wchar_t * pcl, const wchar t * pc2, t UInt u Ten);

Compares the first u_len characters of pcl and pc2 and returns a value indicating their relationship. The
return value is less than zero if *pcl < *pc2, equal to zero if *pcl == *pc2, and greater than zero if *pcl >
*pc2. The characters are compared as unsigned values.

const char * t1_FirstChar (const char * pc mem, t UInt u Tlen, char c_search);
const wchar_t * t1 FirstChar (const wchar t * pc_mem, t UInt u_len, wchar_t c_search);
If successful, it returns a pointer to the first occurrence of c_search in the first u_len characters of pc_mem.

Otherwise it returns the null pointer.

const char * t1_FirstMemory (const char * pc mem, t UInt u_len, const char * pc_search, t UInt u_searchlLen);
const wchar_t * t1_FirstMemory (const wchar_t * pc_mem, t UInt u_len, const wchar t * pc_search, t Ulnt
u_searchlLen);

If successful, it returns a pointer to the first occurrence of the first u_searchlLen characters of pc_search in
the first u_len characters of pc_mem. Otherwise it returns the null pointer.

const char * t1_LastChar (const char * pc_mem, t UInt u_Ten, char c_search);

const wchar_t * t1_LastChar (const wchar t * pc_mem, t UInt u len, wchar_t c_search);
If successful, it returns a pointer to the last occurrence of c_search in the first u_Ten characters of pc_mem.

Otherwise it returns the null pointer.

const char * t1_LastMemory (const char * pc mem, t UInt u_Tlen, const char * pc_search, t UInt u_searchlLen);
const wchar_t * t1_LastMemory (const wchar_t * pc_mem, t UInt u_len, const wchar t * pc_search, t Ulnt
u_searchlLen);

If successful, it returns a pointer to the last occurrence of the first u_searchlLen characters of pc_search in
the first u_len characters of pc_mem. Otherwise it returns the null pointer.

template <t _UInt u len>
void t1_SwapMemory (void * pvl, void * pv2);

Swap the contents of the two memory blocks pvl and pv2 with size u_len bytes.

template <class t_obj>
void t1 SwapObj (t obj & ol, t obj & 02);

Swap the values of the two objects ol and 02 using operator =. A third local object is used.

Spirick Tuning Reference Manual Page 9

Appropriate Classes

The templates gct_CharBlock and gct_String rely on the global functions of this section.

1.2 Store

1.2.1 Store Interface

Stores are memory management objects. To increase performance there is no common base class with
virtual functions. However, all store classes share a common interface. So it's easy to switch between
multiple store implementations. To avoid compiler errors, all store classes contain all methods of the
common interface. Methods not supported by a specific store class contain the statement ASSERT

(false).

Class Declaration

class ct_AnyStore

{
public:

typedef t UInt
typedef void *

void
t UInt
t Ulnt

t _Position
t Position
void

void *
t Position

t Size
t Size

bool

void

b

Data Types
typedef t UInt t Size;

t Size;
t_Position;

Swap (ct_AnyStore & co_swap);
StoreInfoSize ();
MaxAlloc ();

Alloc (t Size o size);
Realloc (t_Position o pos, t Size o size);
Free (t_Position o pos);

AddrOf (t_Position o_pos);
PosOf (void * pv_adr);

SizeOf (t_Position o _pos);
RoundedSizeOf (t_Position o_pos);

CanFreeAll ();
FreeAll ():

The nested type t Size describes the size of memory blocks, examples are t UInt, t UInt8, t UIntl6 and
t UInt32. If t Size is defined as t _UInt8, the maximum size of a memory block will be 255 bytes and
objects containing size information will require less space.

typedef void * t Position;

Store objects use position values to manage their memory blocks, examples are void *, t UInt, t UInt8,

t UIntle and t UInt32. The position value zero is invalid per definition. The method AddrOf returns the
memory address of a position value. If the position type is void *, the position value may (or may not) be
equal to the memory address. Hence, always use the method AddrOf for memory access and do not use
the position value itself.

Spirick Tuning Reference Manual Page 10

Methods

void Swap (ct_AnyStore & co_swap);

Swaps the values of the two objects.

t UInt StorelnfoSize ();
Returns the number of bytes for memory management per block. This method is not supported by all
store classes.

t UInt MaxAlloc ();

Returns the maximum size of a contiguous memory block.

t Position Alloc (t_Size o_size):
Allocates a contiguous memory block of size u_size. Returns zero if u_size is zero. On memory overflow
reserve handler and overflow handler are called.

t Position Realloc (t_Position o pos, t Size o _size);

Reallocates memory block pointed to by o pos to size u_size. If o_pos is zero, Realloc is identical to Alloc.
If u_size is zero, Realloc is identical to Free. On memory overflow reserve handler and overflow handler
are called.

void Free (t Position o pos);

Frees memory block pointed to by o pos. o pos may be zero.

void * AddrOf (t Position o pos);

Returns the memory address of position value o _pos. If o_pos is zero it returns the null pointer.

t_Position PosOf (void * pv_adr):

Returns the position value of memory address pv_adr. This method is not supported by all store classes.

t Size SizeOf (t_Position o _pos);
Returns exactly the size of the memory block pointed to by o pos. This method is not supported by all
store classes.

t_Size RoundedSizeOf (t Position o_pos);
Returns the rounded size of the memory block pointed to by o pos. This method is not supported by all
store classes.

bool CanFreeAll ();

Returns true if the store class can free all allocated memory blocks.

void FreeAll ():

Frees all allocated memory blocks. This method is not supported by all store classes.

1.2.2 Global Stores (tuning/defs.hpp)

Stores are used very differently within the Spirick Tuning library. The three dynamic stores (see following
sections) are accessed by generated global wrapper classes (using a global store object). For example, in
most cases there is no need to create multiple round stores. The parameters of one global round store
object may be applied to the entire program.

Spirick Tuning Reference Manual Page 11

Numerous class templates take a store class as parameter and create a store instance. For example,
every list container allocates the node memory by its own store object. A block list container has a local
block store. A normal list container uses a wrapper class to access a global store object.

There are four wrapper classes for each global store object. Each wrapper class has its own t_Size data
type. All methods of a wrapper class are declared static. They can be called directly (class::method, e.g.
in gct _Block) or by a wrapper object (object.method, e.g. in gct DList).

A method of a wrapper class calls the appropriate method of the global store object. If the position
value is equal to the memory address, then the AddrOf method is implemented inline in the wrapper
class.

Each global store object has its own global access function. The global object is created in the first call
of the access function. This technique ensures safe access to store objects from constructors of global
C++ objects. A global store object may be created directly by a global Create function.

Global store objects are not destroyed automatically during program termination. This technique ensures
safe access to store objects from destructors of global C++ objects. The destruction of global store
objects is not necessary. They manage raw memory blocks, and this memory is released by the OS
automatically. A global store object may be destroyed directly by a global Delete function.

Note that a heap walker may report the global store objects as memory leaks at the end of the program.
This problem can be avoided by explicitly deleting these objects. Please ensure that a global store object
is not used after deleting it.

GLOBAL_STORE_DCLS(t store, Obj, inl_or stat)

This macro appears at the end of the store class definition. t_store is the original store class. 0bj is a
small identifier for name generation. Multiple wrapper classes are generated. inl or_stat determines
whether the AddrOf and PosOf methods are implemented inline or static. The macro usage

GLOBAL_STORE_DCLS (ct_AnyStore, My. INLINE)
contains the following declarations:

void CreateMyStore ();

void DeleteMyStore ();
ct_AnyStore * GetMyStore ();
class ct_My Store;

class ct_My8Store;

class ct_MyléStore;

class ct_My32Store;

GLOBAL_STORE DEFS(t store, Obj, inl_or stat)

This macro appears in the store class implementation file and contains the same parameters as
GLOBAL_STORE_DCLS. The generated code contains the implementation of the wrapper class methods.

1.2.3 Wrapper Class Example

The entire declaration of the wrapper class ct Myl6Store read as follows:

class ct_MyléStore
{

public:
typedef t_UIntl6 t_Size;
typedef ct AnyStore::t Position t Position;
typedef ct_AnyStore t_Store;
static void Swap (ct_MyléStore &);
static t_UInt StorelnfoSize ();

Spirick Tuning Reference Manual Page 12

static t _UInt MaxAlloc ();

static t_Position Alloc (t_Size o size);

static t_Position Realloc (t_Position o pos, t Size o size);
static void Free (t_Position o _pos);

static inline void * Addr0f (t_Position o_pos) { return o_pos; }
static inline t Position PosOf (void * pv_adr) { return pv_adr; }
static t_Size SizeOf (t_Position o_pos);

static t_Size RoundedSizeOf (t_Position o_pos):

static bool CanFreeAlT ();

static void FreeAll ();

static ct_AnyStore * GetStore ()

b

The macro GLOBAL _STORE DEFS generates three global access functions. For performance reasons, the
construction and destruction of global store objects are not thread-safe. These actions should be done
at program startup/termination in single-thread mode.

static ct_AnyStore * pco MyStore;
void CreateMyStore ()

if (pco MyStore == 0)
pco_MyStore = new ct_AnyStore;

void DeleteMyStore ()

if (pco_ MyStore != 0)

{
delete pco_MyStore;

pco_MyStore = 0;
1

ct_AnyStore * GetMyStore ()

{

if (pco_MyStore == 0)
CreateMyStore ();

return pco_MyStore;

}

The generated definition of ct Myl6Store:: Alloc read as follows:
ct Myl6Store::t Position

ct _MyléStore::Alloc (t_Size o_size)
{ return GetMyStore ()-> Alloc (o _size); }

1.3 Dynamic Stores

1.3.1 Standard Store (tuning/std/store.hpp)

ct_StdStore is the simplest store class. The global C functions of the system interface are mapped to the
C++ class interface. For example, the Alloc method calls the global t1 Alloc function.

Class Declaration
class ct_StdStore

{
public:
typedef t_UInt t_Size;
typedef void * t Position;
static inline void Swap (ct_StdStore & co_swap);

Spirick Tuning Reference Manual Page 13

static inline t UInt StorelnfoSize ();
static inline t Ulnt MaxAlloc ();

static inline t Position Alloc (t_Size o0 size);
static inline t_Position Realloc (t _Position o_pos, t Size o size);
static inline void Free (t_Position o _pos);

static inline void * AddrOf (t_Position o_pos);
static inTine t Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o _pos);

static inline t Size RoundedSizeOf (t_Position o_pos);
static inline bool CanFreeAlT ();

static inline void FreeAll ();

b

inTine ct _StdStore::t Position ct StdStore::Alloc (t _Size o _size)
{ return t1_Alloc (o_size): }

Special Cases, Wrapper Classes

The following methods are not supported by standard store: SizeOf, RoundedSizeOf and FreeAll. The class
ct_StdStore relies on the system interface and uses reserve memory. Debugging tools and heap walkers
of the C standard library can be used together with ct_StdStore.

The following declarations of access functions and wrapper classes are generated in the standard store
header file:

void CreateStdStore ():

void DeleteStdStore ():
ct_StdStore * GetStdStore ():
class ct_Std Store:

class ct_Std8Store;

class ct _StdléStore;

class ct_Std32Store;

1.3.2 Round Store (tuning/rnd/store.hpp)

ct_RndStore uses the system interface like ct_StdStore. Additionally, it rounds block sizes before calling
global functions. The private method Round calculates rounded values.

Class Declaration

class ct_RndStore

{
public:
typedef t UInt t Size;
typedef void * t_Position;
ct_RndStore ();
void Swap (ct_RndStore & co swap);

static inline t_UInt StorelnfoSize ();
static inline t Ulnt MaxAlloc ();

inline t _Position Alloc (t _Size o_size);

inTine t _Position Realloc (t_Position o pos, t Size o size);
static inline void Free (t_Position o _pos);

static inline void * AddrOf (t_Position o_pos);

Spirick Tuning Reference Manual Page 14

static inline t _Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o _pos);
static inline t Size RoundedSize0f (t_Position o_pos);
static inline bool CanFreeAll ();

static inline void FreeAll ();

>

inTine ct_RndStore::t Position ct RndStore::Alloc (t _Size o_size)
{ return t1_Alloc (Round (o_size)); }

Block size rounding minimizes the number of reallocations and prevents memory fragmentation. Round
store rounds block sizes to the next power of two. If the heap utilization is very high, then the chain
store should be used.

The efficiency of the round store depends on the C standard library implementation. A rule of thumb is:
The round store increases performance in older compiler environments. Newer compilers have their own
heap optimizations and will disturb the round store. The chain store always increases the memory
management performance.

Special Cases, Wrapper Classes

The following methods are not supported by round store: Size0f, RoundedSizeOf and FreeAll. The class
ct_RndStore relies on the system interface and uses reserve memory. Debugging tools and heap walkers
of the C standard library can be used together with ct RndStore.

The following declarations of access functions and wrapper classes are generated in the round store
header file:

void CreateRndStore ():

void DeleteRndStore ();
ct_RndStore * GetRndStore ():
class ct Rnd_Store;

class ct Rnd8Store;

class ct_Rndl6Store;

class ct Rnd32Store;

1.3.3 Chain Store (tuning/chn/store.hpp)

The chain store is a significant improvement over the round store. The focus is on programs with heavy
heap utilization. ct_ChnStore has several optimization techniques to improve performance. The chain store
prevents memory fragmentation. In most cases, the total amount of memory will decrease. Furthermore,
there are no disadvantages for programs with low heap utilization.

Class Declaration

class ct_ChnStore

{
public:
typedef t UInt t Size;
typedef void * t Position;
ct_ChnStore ():
~ct_ChnStore ();
void Swap (ct_ChnStore & co_swap);

static inTine t_UInt StorelnfoSize ();
static inline t Ulnt MaxAlloc ():

Spirick Tuning Reference Manual Page 15

t_Position Alloc (t_Size o_size);

t_Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o _pos);
static inline void * AddrOf (t_Position o_pos);

static inline t _Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o _pos);
inTine t Size RoundedSizeOf (t_Position o _pos);
static bool CanFreeAlT ();

static void FreeAll ();

unsigned GetMaxChainExp ();

void SetMaxChainExp (unsigned u_exp);
t Ulnt GetEntries ();

t UInt GetSize ();

t Ulnt QueryAllocEntries ();

t Ulnt QueryAllocSize ():

t Ulnt QueryFreeEntries ();

t Ulnt QueryFreeSize ();

void FreeUnused ();

b

Chain store rounds block sizes like round store to the next power of two. Additionally, ct ChnStore has
its own memory management. For each of the few block sizes chain store contains a chain of free
memory blocks. If ct_ChnStore allocates a new memory block, then it looks into the appropriate chain for
a free block. If ct_ChnStore frees a memory block, then it puts the block into the appropriate chain.

Chain store uses the first sizeof (t UInt) bytes of the memory block for management information. The
methods SizeOf and RoundedSizeOf are implemented. Furthermore, it is possible to calculate memory
usage statistics.

If the application allocates and frees nearly the same amount of memory, then the chain store is very
efficient. When a large number of memory blocks are freed, the chain store will contain a large amount
of unused memory. In this case, the FreeUnused method will give the memory back to the C standard
library.

With increasing block sizes the probability of memory fragmentation decreases. Therefore the free
chains may be limited by a maximum value. Above this value chain store works like a round store with
step divider one (no free chains are used).

ct_ChnStore contains additional methods for memory usage statistics. The private attributes are protected
against multiple thread access.

Additional Methods
unsigned GetMaxChainExp ():

Returns the max. exponent for free chains.

void SetMaxChainExp (unsigned u_exp);

Sets the max. exponent for free chains. Default value is 22 (2°22 = 4 MB).

t UInt GetEntries ():

Returns the number of used and unused memory blocks.

t UInt GetSize ():

Returns the total size of used and unused memory blocks.

Spirick Tuning Reference Manual Page 16

t UInt QueryAllocEntries ();

Calculates the number of used memory blocks.

t _UInt QueryAllocSize ();

Calculates the total size of used memory blocks.

t_UInt QueryFreeEntries ();

Calculates the number of unused memory blocks.

t _UInt QueryFreeSize ():

Calculates the total size of unused memory blocks.

void FreeUnused ():

Gives all unused memory blocks back to the C standard library.

Special Cases, Wrapper Classes

The FreeAll method is not supported by chain store. The class ct_ChnStore relies on the system interface
and uses reserve memory. Debugging tools and heap walkers of the C standard library can be used
together with ct_ChnStore. Notice that free chain blocks appear as used memory and that the first four or
eight bytes of memory blocks are used by chain store.

The following declarations of access functions and wrapper classes are generated in the chain store
header file:

void CreateChnStore ();

void DeleteChnStore ();
ct_ChnStore * GetChnStore ():
class ct Chn_Store;

class ct _Chn8Store;

class ct_ChnléStore;

class ct _Chn32Store;

1.3.4 Global new and delete operators (tuning/newdel.cpp)

The file "tuning/newdel.cpp’ contains implementations of the global new and delete operators using the
chain store. Sometimes this feature has side effects with other libraries. Therefore it must be explicitly
enabled with the TL_NEWDEL macro.

void * operator new (size t u_size)

{

return GetChnStore ()-> Alloc (u_size);

}

void operator delete (void * pv)

{
GetChnStore ()-> Free (pv):

}
void * operator new [] (size t u_size)

return GetChnStore ()-> Alloc (u_size);

}

void operator delete [] (void * pv)

{
GetChnStore ()-> Free (pv);
}

Spirick Tuning Reference Manual Page 17

1.4 Block

1.4.1 Block Interface

Numerous classes within the Spirick Tuning library use dynamic memory blocks to store their data. The
block interface is a simple object oriented concept of managing a single memory block. To increase
performance there is no common base class with virtual functions. However, all block classes share a
common interface. So it's easy to switch between multiple block implementations. Block classes are
used as template parameters of strings, arrays and block stores.

Class Declaration

class ct_AnyBlock
{

public:

typedef t UInt t Size;
ct_AnyBlock ();
ct_AnyBlock (const ct AnyBlock & co_init);
~ct_AnyBlock ();

ct_AnyBlock & operator = (const ct AnyBlock & co_asgn):

void Swap (ct_AnyBlock & co swap);

static t_UInt GetMaxByteSize ();

t Size GetByteSize () const;

void SetByteSize (t _Size o0 newSize);

void * GetAddr () const;

IE

Data Types

typedef t UInt t Size;

The nested type t Size describes the size of the memory block, examples are t Ulnt, t UInt8, t UIntl6
and t UInt32. If t Size is defined as t UInt8, the maximum size of the memory block will be 255 bytes.
An attribute of type t Size will consume one byte.

Constructors, Destructor, Assignment, Swap

Every block class contains a constructor, a copy constructor, a destructor and an assignment operator.

ct_AnyBlock ();

Initializes an empty block object.

ct_AnyBlock (const ct_AnyBlock & co_init);

Initializes a block object and copies the input data into its own memory block (deep copy).

~ct_AnyBlock ();

Releases the allocated memory.

ct_AnyBlock & operator = (const ct AnyBlock & co_asgn);

Copies the input data into its own memory block (deep copy).

Spirick Tuning Reference Manual Page 18

void Swap (ct AnyBlock & co swap);

Swaps the values of the two objects.

Additional Methods
static t_UInt GetMaxByteSize ();

Returns the maximum size of the memory block.

t Size GetByteSize () const;

Returns the current size of the memory block.

void SetByteSize (t_Size o newSize):

Reallocates the memory block to size 0 _newSize.

void * GetAddr () const;

Returns the memory address of the block or the null pointer if size is zero.

The following sections describe different implementations of the block interface.

1.4.2 Simple Block (tuning/block.h)

The class template gct Block is the standard implementation of the block interface. The implementation
consists of the base class gct BlockBase, the block class gct Block and the helper classes
gct_EmptyBaseBlock and gct ObjectBaseBlock.

Base Class

The block base class contains attributes of the t Position and t_Size data types of the corresponding
store class. The size of the object depends on these data types. t staticStore must have the common
store interface. All methods of t staticStore must be declared static, examples are ct_Rnd16Store and
ct_Chn32Store. The block base class can be used for different purposes:

1. If the t Position and t _Size data types have different sizes (e.g. void * and t_UInt16), then the compiler
will insert padding bytes. Note that it is not possible to use padding bytes of a base class in a derived
class. For optimal memory utilization base classes should be designed without padding bytes. The
sample program TBlock contains a modified base class.

2. Sometimes a block class should be derived from a special base class. Therefore the gct BlockBase
template contains a t _base parameter.

Note that the Swap method is declared in the block base class and not in the block class.

Template Declaration

template <class t_staticStore, class t_base>
class gct BlockBase: public t base
{
public:
typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o Pos;
t Size 0_Size;

Spirick Tuning Reference Manual Page 19

public:

inline void Swap (gct BlockBase & co swap);
inTine t StaticStore::t Store * GetStore () const;
b

Block Class

The template parameter t blockBase must at least contain the same data types, attributes and methods
as the gct_BlockBase template.

Template Declaration

template < class t _blockBase>
class gct Block: public t_blockBase
{
public:
typedef t blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

inline gct Block ();
inline gct Block (const gct Block & co_init);
inline ~gct Block ();

inline gct Block & operator = (const gct Block & co_asgn);

static inline t UInt GetMaxByteSize ();

inline t_Size GetByteSize () const;

inline void SetByteSize (t_Size o newSize);
inline void * GetAddr () const;

b

The methods of gct Block are very simple. The store methods are called directly.

template <class t _staticStore>
inTine void gct Block <t _staticStore>::SetByteSize (t Size o _newSize)
{
0 Size = 0_newSize;
0 Pos = t_staticStore::Realloc (o _Pos, o Size);

}

Helper Classes

The top-level base class may be ct Empty or ct Object. Two class templates are predefined.

Template Declaration

template <class t_staticStore>
class gct EmptyBaseBlock:
public gct Block <gct BlockBase <t staticStore, ct Empty> >
{
i

Template Declaration

template <class t staticStore>
class gct ObjectBaseBlock:
public gct Block <gct BlockBase <t staticStore, ct Object> >
{
b

Spirick Tuning Reference Manual Page 20

1.4.3 Mini Block (tuning/miniblock.h)

A gct Block object contains a size and a position attribute. If the store class supports the SizeOf method,
then the size attribute is redundant. The gct_MiniBlock template uses the SizeOf method instead of a size
attribute. The implementation consists of the base class gct MiniBlockBase, the block class gct MiniBlock

and the helper classes gct_EmptyBaseMiniBlock and gct ObjectBaseMiniBlock.

Base Class

The class template gct_MiniBlockBase is similar to gct _BlockBase (see above).

Template Declaration

template <class t_staticStore, class t_base>
class gct _MiniBlockBase: public t_base
{
public:
typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o Pos;
public:
inline void Swap (gct_MiniBlockBase & co_swap):
inTine t _StaticStore::t Store * GetStore () const;
1%

Block Class

The template parameter t_blockBase must at least contain the same data types, attributes and methods
as the gct MiniBlockBase template.

Template Declaration

template <class t blockBase>
class gct MiniBlock: public t_blockBase
{
public:
typedef t blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

inline gct _MiniBlock ();
inTine gct MiniBlock (const gct MiniBlock & co init);
inTine ~gct_MiniBlock ();

inline gct MiniBlock & operator = (const gct MiniBlock & co_asgn);

static inline t UInt GetMaxByteSize ();

inline t_Size GetByteSize () const;

inline void SetByteSize (t _Size o newSize);
inline void * GetAddr () const;

b

A mini block object consumes less memory than a block object. Note that some methods are slightly
slower than the corresponding block methods.

template <class t blockBase>
inTine gct MiniBlock <t blockBase>::t Size
gct MiniBlock <t blockBase>::GetByteSize () const

{
return (t_Size) t_staticStore::Size0f (o_Pos);

Spirick Tuning Reference Manual Page 21

Helper Classes

The top-level base class may be ct_Empty or ct_Object. Two class templates are predefined.

Template Declaration

template <class t _staticStore>
class gct EmptyBaseMiniBlock:
public gct MiniBlock <gct MiniBlockBase <t staticStore, ct Empty> >

{
b

Template Declaration

template <class t_staticStore>
class gct _ObjectBaseMiniBlock:
public gct MiniBlock <gct MiniBlockBase <t _staticStore, ct Object> >

{
b

1.4.4 Reserve Block (tuning/resblock.h)

The class template gct_ResBlock is similar to gct _Block. In addition to the current size of the block, a
reserve block contains a minimum size parameter. In some use cases the number of reallocations can be
reduced by using the minimum size. The implementation consists of the base class gct ResBlockBase, the
block class gct_ResBlock and the helper classes gct EmptyBaseResBlock and gct ObjectBaseResBlock.

Base Class

The class template gct_ResBlockBase is similar to gct _BlockBase (see above).

Template Declaration

template <class t _staticStore, class t_base>
class gct ResBlockBase: public t base
{
public:
typedef t_staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o _Pos;
t Size 0 Size;
t Size 0_MinSize;
public:
inline void Swap (gct ResBlockBase & co_swap):
inline t StaticStore::t Store * GetStore () const;
}

Block Class

The template parameter t blockBase must at least contain the same data types, attributes and methods
as the gct_ResBlockBase template.

Spirick Tuning Reference Manual Page 22

Template Declaration

template <class t blockBase>
class gct ResBlock: public t_blockBase
{
public:
typedef t blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

inline gct _ResBlock ();
inTine gct ResBlock (const gct ResBlock & co_init);
inTine ~gct_ResBlock ();

inTine gct ResBlock & operator = (const gct ResBlock & co_asgn);

static inTine t UInt GetMaxByteSize ();

inline t_Size GetByteSize () const;

inTine void SetByteSize (t_Size o newSize);
inline void * GetAddr () const;

inline t _Size GetMinByteSize () const;

inline t_Size GetAllocByteSize () const;

inline void SetMinByteSize (t Size o newSize);
1%

Additional Methods
t Size GetMinByteSize () const;

Returns the minimum size of the block.

t Size GetAllocByteSize () const;

Returns the currently allocated size of the block.

void SetMinByteSize (t Size o newSize);

Sets the minimum size of the block to o newSize.

Helper Classes

The top-level base class may be ct Empty or ct Object. Two class templates are predefined.

Template Declaration

template <class t_staticStore>
class gct EmptyBaseResBTock:
public gct_ResBlock <gct ResBlockBase <t staticStore, ct Empty> >
{
b

Template Declaration

template <class t staticStore>
class gct _ObjectBaseResBlock:
public gct ResBlock <gct ResBlockBase <t staticStore, ct Object> >
{
b

Spirick Tuning Reference Manual Page 23

1.4.5 Fixed Sized Block (tuning/fixblock.h)

The gct_FixBlock template eliminates the overhead of dynamic memory management. It is useful for
block sizes from zero to 50 bytes. The block size is limited to a constant value. A gct FixBlock object
does not allocate dynamic memory. It contains a fixed sized byte array.

Template Declaration

template <class t_size, t UInt u_fixSize>
class gct FixBlock

{
public:
typedef t_size t Size;
protected:
t Size 0 Size;
char ac_Block [u_fixSizel;
public:
inTine gct FixBlock ():
inline gct FixBlock (const gct FixBlock & co_init);:
inline gct FixBlock & operator = (const gct FixBlock & co_asgn);
void Swap (gct FixBlock & co_swap);
static inline t _UInt GetMaxByteSize ();
inline t_Size GetByteSize () const;
inline void SetByteSize (t _Size o newSize);
inline void * GetAddr () const;
=

Note that the alignment of the internal char array depends on the t_size parameter.

1.4.6 Null Data Block (tuning/nulldatablock.h)

A null-terminated string consumes memory even if it is empty (for the null character). Due to rounding
of block sizes and memory management overhead, 8 or 16 bytes are consumed. In some use cases this
may lead to a significant amount of memory. The class template gct NullDataBlock uses a static allocated
null-value object. If the block size is 1, then no dynamic memory ist allocated.

The template parameter t block must contain the block interface.

Template Declaration

template <class t_block, class t_null>
class gct NullDataBlock: public t block

{
public:
typedef t block::t Size t Size;
private:
static t_null 0 _NullData;
public:
inline t_Size GetByteSize () const;
inTine void SetByteSize (t_Size o_newSize):
inTine void * GetAddr () const;
b

Note that the last character of the block must contain the null value, no other values are allowed.

Spirick Tuning Reference Manual Page 24

1.4.7 Character Block (tuning/charblock.h)

The class template gct_CharBlock is an extension of the common block interface. It contains several
useful methods. The common block is the base class of the character block. The template parameter
t_char may be char or wchar_t. To avoid any possibility of confusion, byte-oriented methods are declared
private.

Base Class

ct_AnyBlock (see above 'Block Interface')

Template Declaration

template <class t_block, class t_char>
class gct_CharBlock: public t_block

{
public:
inline t _Size GetMaxCharSize () const;
inTine t _Size GetCharSize () const;
inline void SetCharSize (t Size o size);
inTine void IncCharSize (t_Size o _inc);
inline void DecCharSize (t Size o dec);
inline t_char * GetRawAddr () const;
inline t _char * GetRawAddr (t_Size o _pos) const;
inline t_char * GetCharAddr () const;
inline t _char * GetCharAddr (t _Size o_pos) const;
t char * AppendChars (t_Size o_Ten);
t char * InsertChars (t_Size o pos, t Size o_count);
t char * DeleteChars (t_Size o pos, t Size o _count);
inline t _char * FillChars (t_Size o pos, t Size o count, t char c fill = (t_char) 0);
inline void AssignChars (const t _char * pc_asgn, t Size o len);
inline void AppendChars (const t_char * pc_app, t _Size o_Ten);
inTine void InsertChars (t_Size o _pos, const t char * pc_ins, t Size o_Tlen);
void ReplaceChars (t Size o _pos, t Size o _dellen,
const t_char * pc_ins, t _Size o_insLen);
inTine t Size GetDefaultPageSize () const;
inline void AlignPageSize (t_Size o_itemSize, t Size o_pageSize):
b
Methods

t Size GetMaxCharSize ();

Returns the maximum character size of the memory block.

t Size GetCharSize () const;

Returns the current character size of the memory block.

void SetCharSize (t Size o size);

Reallocates the memory block to o_size characters.

void IncCharSize (t Size o_inc);

Increases block size by o _inc characters.

void DecCharSize (t Size o_dec);

Decreases block size by o_dec characters. o_dec must be less than or equal to GetCharSize ().

Spirick Tuning Reference Manual Page 25

t _char * GetRawAddr () const;

Returns the memory address of the block or the null pointer if size is zero.

t _char * GetRawAddr (t Size o _pos) const;
Returns the memory address of the character at position 0 pos. o_pos must be less than or equal to
GetCharSize ().

t char * GetCharAddr () const;

Returns the memory address of the block. Size must be greater than zero.

t _char * GetCharAddr (t_Size o_pos) const:

Returns the memory address of the character at position 0 _pos. 0_pos must be less than GetCharSize ().

t _char * AppendChars (t Size o _len);
Increases block size by o len characters. Returns the memory address of the character at position
GetCharSize () - o_Ten.

t char * InsertChars (t Size o pos, t Size o len);
Increases block size by o len characters and moves memory from position 0_pos to position o_pos + o_len.
Returns the memory address of the character at position o_pos.

t char * DeleteChars (t Size o pos, t Size o len);
Moves memory from position o0_pos + o_len to position 0o_pos and decreases block size by o _Ten
characters. Returns the memory address of the character at position o _pos.

t char * FillChars (t _Size o pos, t Size o len, t char c_fill = (t_char) 0);
Sets 0_len characters at position o _pos to the character c_fill. Returns the memory address of the
character at position 0_pos.

void AssignChars (const t char * pc_asgn, t Size o _len);
Reallocates the memory block to o _Ten characters and copies the first o_Ten characters from pc_asgn to
the memory block.

void AppendChars (const t _char * pc_app, t Size o_Ten);
Increases block size by o _len characters and copies the first 0_len characters from pc_app to position
GetCharSize () - o_Ten.

void InsertChars (t Size o _pos, const t char * pc_ins, t Size o_len);
Increases block size by o _len characters, moves memory from position 0 pos to position o0 pos + 0 _len
and copies the first o_Ten characters from pc_ins to position 0_pos.

void ReplaceChars (t Size o pos. t Size o dellen, const t char * pc_ins, t Size o _insLen);
Replaces o _dellen characters at position o pos by the first o_insLen characters from pc_ins. Block size may

be changed.

t Size GetDefaultPageSize () const;
void AlignPageSize (t Size o itemSize, t Size o pageSize);

These methods make gct CharBlock compatible with the page block interface.

1.4.8 Item Block (tuning/itemblock.h)

The class template gct_ItemBlock is smilar to gct_CharBlock, but instead of a char type parameter, an
arbitrary item size parameter is used. The implementation consists of the item block class gct_ItemBlock

Spirick Tuning Reference Manual Page 26

and the helper classes gct_VarItemBlock and gct FixItemBlock. To avoid any possibility of confusion, byte-
oriented methods are declared private.

Base Class

ct_AnyBlock (see above 'Block Interface')

Template Declaration

template <class t_block>
class gct_ItemBlock: public t block

{
public:
inTine t_Size GetFixSize () const:
inline t _Size GetMaxItemSize () const;
inTine t _Size GetItemSize () const;
inline void SetltemSize (t Size o size);
inline void IncItemSizel ()
inTine void DecltemSizel ()
inTine void IncItemSize (t_Size o _inc);
inline void DecltemSize (t Size o dec);
inTine void * GetItemAddr (t_Size o pos) const;
void * AppendItems (t Size o count);
void * InsertItems (t Size o _pos, t Size o_count);
void * Deleteltems (t _Size o pos, t Size o _count);
inline t Size GetDefaultPageSize () const;
inTine void ATignPageSize (t_Size o fixSize, t Size o_pageSize);
b
Methods

t Size GetFixSize () const;

Returns the byte size of a single item.

t Size GetMaxItemSize () const;

Returns the maximum item size of the memory block.

t Size GetItemSize () const;

Returns the current item size of the memory block.

void SetltemSize (t_Size o_size) const;

Reallocates the memory block to o _size items.

void IncItemSizel ():

Increases block size by 1 item.

void DecItemSizel ():

Decreases block size by 1 item.

void IncItemSize (t Size o_inc);

Increases block size by o_inc items.

void DecItemSize (t Size o _dec);

Decreases block size by o_dec items. 0_dec must be less than or equal to GetItemSize ().

Spirick Tuning Reference Manual Page 27

void * GetItemAddr (t Size o_pos) const;

Returns the memory address of the item at position 0_pos. o_pos must be less than GetItemSize ().

void * AppendItems (t Size o _count);

Increases block size by o_count items. Returns the memory address of the first new item at the end of
the block.

void * InsertItems (t Size o _pos, t Size o _count);

Increases block size by o _count items and moves memory from position 0 _pos to position o _pos + o_count.
Returns the memory address of the item at position o _pos.

void * Deleteltems (t Size o _pos, t Size o _count);

Moves memory from position o_pos + o_count to position o0 _pos and decreases block size by o _count items.
Returns the memory address of the item at position 0 _pos.

t Size GetDefaultPageSize () const;
void AlignPageSize (t Size o_itemSize, t Size o pageSize);

These methods make gct _ItemBlock compatible with the page block interface.

Helper Classes

The item size can be configured at compile time or at runtime. The class template gct_VarItemBlock
enables runtime configuration by using the method AlignPageSize. A typical use case is the block store.

Template Declaration

template <class t block>
class gct VarItemBlock:
public gct ItemBlock <gct VarItemBlockBase <t block> >

{
b

The class template gct_FixItemBlock contains the parameter o_itemSize for compile time configuration. A
typical use case is the array container.

Template Declaration

template <class t _block, t UInt o_itemSize>
class gct FixItemBlock:
public gct_ItemBlock <gct FixItemBlockBase <t block, o_itemSize> >

{
1%

1.4.9 Page Block (tuning/pageblock.hpp)

A page block uses equal-sized memory pages instead of a continuous memory block. This concept
provides the following advantages:

1. Lower number of memory allocations and releases.

2. Lower memory fragmentation.

3. No memory copying while changing the block size.

4. All memory addresses remain valid while changing the block size.

This special implementation uses a class with virtual functions instead of template parameters. The page
block uses a helper block for managing pointers to the pages. Different store classes can be used for
the management block and the data pages.

Spirick Tuning Reference Manual Page 28

The size of the pointer management block may be fixed or variable. If the size is fixed, then no mutex is
required for the methods GetCharAddr and GetItemAddr in a multi-threaded environment. Note that a fixed
sized management block leads to a maximum size of the entire page block.

The implementation of the page block consists of the base class gct_PageBlockBase with some virtual
methods and the derived class ct_PageBlock with access to two store objects. The page block class
contains some common block methods and additionally also the methods of gct _CharBlock and

gct ItemBlock.

Note that the memory location of a single item must not overlap a page boundary. Therefore the page
block must be initialized with the method AlignPageSize while the size is zero.

Class Declaration

class ct_PageBlockBase

{
public:
typedef t UInt t Size;
protected:
void SetByteSize0 ();
virtual void * AllocPtr (t_Size o_size) = 0;
virtual void * ReallocPtr (void * pv_mem, t Size o0 size) = 0;
virtual void * AllocData (t_Size o_size) = 0;
virtual void FreeData (void * pv_mem) = 0;
virtual void LastPageWarning () { }
virtual void LastPageError () { }
pubTlic:
// Block
ct_PageBlockBase ();
inline ct_PageBlockBase (const ct_PageBlockBase & co_init);
virtual ~ct_PageBlockBase () { }
inTine ct_PageBlockBase & operator = (const ct PageBlockBase & co_asgn);
void Swap (ct_PageBlockBase & co_swap);

// CharBlock

inTine t _Size GetMaxCharSize () const;
inline t_Size GetCharSize () const;

inTine void SetCharSize (t_Size o size);
inline void IncCharSize (t_Size o _inc);
inTine void DecCharSize (t_Size o dec);

GetRawAddr () const;
GetRawAddr (t_Size o _pos) const;
GetCharAddr () const;
GetCharAddr (t_Size o _pos) const;

inline char
inline char
inline char
inline char

* % X% X%

char * AppendChars (t_Size o _count);

char * InsertChars (t _Size o _pos, t Size o_count);
char * DeleteChars (t Size o pos, t Size o _count);
char * Fi11Chars (t_Size o _pos, t Size o _count,

char ¢ _fi11 = "\0");

// TtemBlock

inTine t_Size GetFixSize () const;

inline t_Size GetMaxItemSize () const:

inTine t _Size GetItemSize () const;

inTine void SetltemSize (t_Size o_size);
inTine void IncItemSizel ()

inTine void DecItemSizel ()

inTine void IncItemSize (t_Size o _inc);
inTine void DecltemSize (t Size o dec);
inline void * GetItemAddr (t_Size o pos) const;

Spirick Tuning Reference Manual Page 29

inline void * AppendItems (t_Size o_count);
inTine void * InsertItems (t_Size o pos, t Size o_count);
inline void * Deleteltems (t _Size o pos, t Size o _count);

// PageBlock only Methods

inTine t_Size GetDefaultPageSize () const:

inTine t Size GetFixPagePtrs () const;

void SetFixPagePtrs (t_Size o ptrs):

void ATignPageSize (t_Size o fixSize, t Size o_pageSize);
inTine t _Size GetPageSize () const;

inTine t_Size GetRoundedSize () const:

b

Additional Methods

void LastPageWarning ();
This virtual method will be called if the pointer management block is fixed sized and the last data page
was allocated. This implies that only a single data page is available.

void LastPageError ():
This virtual method will be called if the pointer management block is fixed sized and the last data page

does not contain any more free space.

The behaviour of this method is similar to the overflow handler (see above t1_SetOverflowHandler). This
method must not throw C++ exceptions. Exceptions from LastPageError are not handled by the library
and lead to inconsistent objects. Afterwards the program is terminated by the function t1_EndProcess.

t Size GetDefaultPageSize () const;

Returns a default value for the size of a data page.

t Size GetFixPagePtrs () const;
Returns the number of pointers in the management block (i.e. the max. number of data pages). The
return value zero means that the size of the management block is variable.

void SetFixPagePtrs (t Size o ptrs);
Sets the number of pointers in the management block (i.e. the max. number of data pages) to o ptrs.
While calling this method, the block size must be zero.

void AlignPageSize (t Size o fixSize, t Size o_pageSize):
The size of data pages is calculated so that it is a multiple of o_fixSize and greater than or equal to
0_pageSize. While calling this method, the block size must be zero.

t Size GetPageSize () const;

Returns the size of a data page.

t Size GetRoundedSize () const;

Returns the product of the page size and the number of pages.

Class Declaration
class ct _PageBlock: public ct PageBlockBase

{
protected:
virtual void * ATlocPtr (t_Size o_size);
virtual void * ReallocPtr (void * pv_mem, t Size o _size);
virtual void * AllocData (t_Size o_size);
virtual void FreeData (void * pv_mem);

Spirick Tuning Reference Manual Page 30

public:
~ct_PageBlock ();

Methods

void * AlTocPtr (t_Size o size);

Allocate memory for the pointer management block.

void * ReallocPtr (void * pv_mem, t Size o size);

Reallocate memory for the pointer management block.

void * AllocData (t Size o size);

Allocate a single data page.

void FreeData (void * pv_mem);

Release a single data page.

~ct PageBlock ();

Within the destructor of the derived class all memory must be released. The destructor of the base class
has no access to the virtual methods implemented in the derived class.

1.4.10 Block Instances (tuning/xxx/block.h)

Some template instances are predefined to easily use the block interface. The macro BLOCK DCLS(0bj)
generates for each wrapper class of a global store one block class.

The macro
BLOCK _DCLS (Any)
expands to:

class ct_Any Block:

public gct EmptyBaseBlock <ct Any Store> { };
class ct_Any8Block:

public gct EmptyBaseBlock <ct Any8Store> { };
class ct_Anyl6Block:

public gct EmptyBaseBlock <ct AnyléStore> { };
class ct_Any32Block:

public gct EmptyBaseBlock <ct Any32Store> { };

Every directory of a global store contains a file 'block.h'.
The file "tuning/std/block.h’ contains the following declarations:

class ct_Std Block;
class ct_Std8Block;
class ct_Stdl6Block;
class ct _Std32Block;

The file "tuning/rnd/block.h’ contains the following declarations:

class ct Rnd Block;
class ct Rnd8Block;
class ct _Rndl6Block;
class ct Rnd32BTock ;

Spirick Tuning Reference Manual Page 31

The file "tuning/chn/block.h’ contains the following declarations:

class ct_Chn Block;
class ct_Chn8Block ;
class ct_Chnl6Block;
class ct_Chn32Block;

1.5 Special Stores

1.5.1 Block Store (tuning/blockstore.h)

A block store uses an item block (see above 'ltem Block') for compact storage of smaller, equal-sized
memory blocks. The rounding and management overhead of a dynamic memory management is
significantly reduced. Typical use cases are list containers. All nodes of a list container have the same
size.

The first template parameter t_itemBlock must at least contain the item block interface, e.g.

gct VarItemBlock <ct ChnléBlock> or ct_PageBlock. The second template parameter t _charBlock must at least
contain the character block interface, e.g. gct_CharBlock <ct Chn32Block, char>. It is used for temporary
data inside of the method FreeUnused.

Base Class

t_itemBlock (see above 'ltem Block"')

Template Declaration

template <class t_itemBlock, class t_charBlock>
class gct BlockStore: public t_itemBlock
{
pubTlic:
typedef t_itemBlock::t Size t Size;
typedef t_itemBlock::t Size t Position;

inline

inline t UInt
inline t UInt

t Position Alloc (t_Size o _size);
t Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o _pos);

inline void *

gct_BlockStore ();

StorelInfoSize () const;
MaxAlloc () const;

Addr0f (t_Position o_pos) const;

inTine t _Position PosOf (void * pv_adr) const;
inline t Size Size0f (t_Position o _pos) const;
inTine t Size RoundedSizeOf (t Position o_pos) const;
inline bool CanFreeAll () const;

inline void FreeAll ();

void SetSortedFree (bool b);

void SetPageSize (t_Size o size);
inTine t Position LastIdx () const;

inline bool HasFree () const;:

void FreeUnused ();

1%

Spirick Tuning Reference Manual

Page 32

Size and position data types of a block store are the same as in the base class. Position values are
indices beginning with 1, 2, 3 etc. The position value zero is invalid per definition (see above 'Store
Interface’).

Note that the memory addresses of block store entries can change if the size of the underlying item
block changes i.e. if the block store methods Alloc, Realloc or Free are called. Note also that the memory
addresses of block store entries remain valid if the parameter t_itemBlock equals ct PageBlock.

The block store implementation uses two different algorithms to manage the internal list of free blocks.
Algorithm 1 is optimized for speed, it uses an unsorted list. Algorithm 2 is optimized for size, it uses an
sorted list. By default, algorithm 1 is active. The method FreeUnused sorts the list of free blocks and tries
to reduce the size of the underlying item block. The method SetSortedFree can be used to switch
between algorithm 1 and 2.

The class template gct BlockStore does not support the SizeOf method. The item size is calculated in the
first call of AlToc or Realloc. In subsequent calls of Alloc or Realloc, the requested size must be less than

or equal to the item size.

Additional Methods
void SetSortedFree (bool b);

Select an algorithm for internal free list management.

void SetPageSize (t Size o size);
If the parameter t_itemBlock equals ct_PageBlock, then this method sets the page size of the underlying
page block.

t Position LastIdx () const;

Returns the maximun position value (allocated or free) or zero, if the block store is empty.

bool HasFree () const;

Returns true, if the internal free list contains at least one element.

void FreeUnused ():

Sorts the list of free blocks and tries to reduce the size of the underlying item block.

1.5.2 Block Store Instances (tuning/xxx/blockstore.h)

Some template instances are predefined to easily use the block store interface. The macro
BLOCK_STORE_DCLS(Obj) generates for each wrapper class of a global store one block store class.

The macro
BLOCK_STORE_DCLS (Any)
expands to:

class ct_Any BlockStore:

public gct BlockStore <gct VarItemBlock <ct Any Block>, gct CharBlock <ct Any Block, char> > { };
class ct_Any8BlockStore:

public gct BlockStore <gct VarItemBlock <ct Any8Block>, gct CharBlock <ct Any8Block, char> > { };
class ct_Anyl6BlockStore:

public gct BlockStore <gct VarltemBlock <ct Anyl6Block>, gct CharBlock <ct AnyléBlock, char> > { };
class ct_Any32BTockStore:

public gct_BlockStore <gct_VarItemBlock <ct_Any32Block>, gct_CharBlock <ct_Any32Block, char> > { }:

Spirick Tuning Reference Manual Page 33

Every directory of a global store contains a file 'blockstore.h'.

The file "tuning/std/blockstore.h' contains the following declarations:
class ct_Std BlockStore;

class ct_Std8BlockStore;

class ct_Stdl6BlockStore;
class ct_Std32BlockStore;

The file "tuning/rnd/blockstore.h’ contains the following declarations:
class ct Rnd BlockStore;
class ct Rnd8BTockStore;
class ct Rndl6BlockStore;
class ct_Rnd32BlockStore;
The file 'tuning/chn/blockstore.h’ contains the following declarations:
class ct Chn BlockStore;
class ct_Chn8BlockStore;

class ct _Chnl6BlockStore;
class ct _Chn32BlockStore;

1.56.3 Reference Counter (tuning/refcount.hpp)

ct_RefCount is a class containing a reference counter and a boolean value. It is used by ref-stores.

Class Declaration
typedef t UInt32 t RefCount;

class ct _RefCount

{

pubTlic:
inTine ct_RefCount ():
inline void Initialize ();

inTine t RefCount GetRef () const:

inTine void IncRef ()
inline void DecRef ()
inline bool IsAlloc () const;
inTline void SetAlloc ():
inTine bool IsFree () const;
inline void SetFree ();
inTine bool IsNull () const;
b

Data Types

typedef t UInt32 t RefCount;

This is the numeric reference counter type.

Methods
ct_RefCount ():

Sets the reference counter to zero and the alloc flag to true

Spirick Tuning Reference Manual Page 34

void Initialize ();

Sets the reference counter to zero and the alloc flag to true.

t RefCount GetRef () const;

Returns the numeric reference counter.

void IncRef ();

Increases the reference counter by 1.

void DecRef ();

Decreases the reference counter by 1.

bool IsAlloc () const;

Returns the alloc flag.

void SetAlloc ();
Sets the alloc flag.

bool IsFree () const:

Returns true, if the alloc flag is not set.

void SetFree ():

Clears the alloc flag.

bool IsNull () const;

Returns true, if the reference counter equals zero and the alloc flag is not set.

1.5.4 Ref-Store (tuning/refstore.h)

A ref-store enhances an existing store class with reference counting. Each single memory block is
associated with a reference counter. The reference counters can be used directly or indirectly by special

classes, e.g. smart pointers.

Note that the reference counter is associated with the memory block and not with its contents, e.g. a
C++ object. Deleting a C++ object and releasing the corresponding memory are two distinct steps. The
C++ object can be deleted by its owner, and the corresponding memory block can be released by the
reference counter. If a C++ object is deleted and the reference counter is greater than zero, then all
smart pointers remain valid, but access to the C++ object is not allowed. In this way isolated islands in

complex, reference counting based data structures can be avoided.

Template Declaration

template <class t_store>
class gct _RefStore
{
public:
typedef t store::t Size t Size;

typedef t store::t Position t _Position;

void
inline t UInt
inline t UInt

t_Position
t_Position

Swap (gct RefStore & co_swap);
StorelnfoSize () const;
MaxAlloc () const;

Alloc (t _Size o_size);

Realloc (t_Position o_pos, t Size o size);

Spirick Tuning Reference Manual

Page 35

inline void Free (t_Position o _pos);

inTine void * Addr0f (t_Position o_pos) const;
inTine t _Position PosOf (void * pv_adr) const;

inline t Size Size0f (t_Position o _pos) const;
inTine t Size RoundedSizeOf (t Position o_pos) const;
inline bool CanFreeAll () const;

inline void FreeAll ();

inTine void IncRef (t_Position o _pos);

inTine void DecRef (t_Position o _pos);

inTine t_RefCount GetRef (t_Position o_pos) const;
inTine bool IsAlloc (t_Position o _pos) const;
inline bool IsFree (t_Position o_pos) const;
inline t_store * GetStore ();

1%

A ref-store passes allocation requests to the underlying store object. The block size is increased by the
size of the ct_RefCount object, and the ct RefCount object is initialized. The reference counter can be
changed by the ref-store methods IncRef and DecRef.

If a memory block is released by the ref-store method Free, then the alloc flag of the corresponding
ct_RefCount object is cleared. If additionally the reference counter equals zero, the block is released by
the underlying store object. Otherwise the reference counter can be changed by the ref-store methods
IncRef and DecRef, but access to the memory by calling the method AddrOf is not allowed. If the reference
counter becomes zero, the block is released by the underlying store object.

The class template gct RefStore does not support the FreeAll method.

Additional Methods

void IncRef (t_Position o _pos);

Increases the reference counter at position o pos by 1.

void DecRef (t Position o pos);

Decreases the reference counter at position o _pos by 1.

t_RefCount GetRef (t_Position o_pos) const;

Returns the numeric reference counter at position o _pos.

bool IsAlloc (t Position o pos) const;

Returns the alloc flag of position value o_pos.

bool IsFree (t Position o _pos) const;

Returns true, if the alloc flag of position value o _pos is not set.

t store * GetStore ();

Returns a pointer to the underlaying store object.

1.5.5 Ref-Store Instances (tuning/xxx/refstore.h)

Some template instances are predefined to easily use the ref-store interface. The macro
REF_STORE_DCLS(0bj) generates for each wrapper class of a global store one ref-store class.

Spirick Tuning Reference Manual Page 36

The macro
REF_STORE_DCLS (Any)
expands to:

class ct_Any RefStore:

public gct RefStore <ct Any Store> { };
class ct_Any8RefStore:

public gct RefStore <ct Any8Store> { };
class ct_Anyl6RefStore:

public gct RefStore <ct Anyl6Store> { };
class ct_Any32RefStore:

public gct RefStore <ct Any32Store> { };

Every directory of a global store contains a file 'refstore.h’.
The file 'tuning/std/refstore.h’ contains the following declarations:

class ct_Std RefStore;
class ct_Std8RefStore;
class ct_Stdl6RefStore;
class ct_Std32RefStore;

The file "tuning/rnd/refstore.h’ contains the following declarations:

class ct _Rnd RefStore;
class ct _Rnd8RefStore;
class ct Rndl6RefStore;
class ct _Rnd32RefStore;

The file 'tuning/chn/refstore.h’ contains the following declarations:

class ct_Chn_RefStore;
class ct_Chn8RefStore;
class ct_ChnléRefStore;
class ct_Chn32RefStore;

1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)

A block-ref-store is a ref-store enhancement of a block store.
Some template instances are predefined to easily use block-ref-stores. The macro
BLOCKREF_STORE_DCLS(Obj) generates for each wrapper class of a global store one block-ref-store class.

The macro
BLOCKREF _STORE_DCLS (Any)
expands to:

class ct_Any BlockRefStore:

public gct RefStore <ct Any BlockStore> { };
class ct_Any8BlockRefStore:

public gct RefStore <ct Any8BlockStore> { };
class ct_AnyléBlockRefStore:

public gct RefStore <ct AnyléBlockStore> { };
class ct_Any32BlockRefStore:

public gct RefStore <ct Any32BlockStore> { };

Every directory of a global store contains a file 'blockrefstore.h'.

Spirick Tuning Reference Manual Page 37

The file "tuning/std/blockrefstore.h' contains the following declarations:

class ct _Std BlockRefStore;
class ct_Std8BlockRefStore;
class ct_Stdl6BlockRefStore;
class ct_Std32BlockRefStore;

The file "tuning/rnd/blockrefstore.h’ contains the following declarations:

class ct Rnd _BlockRefStore;
class ct_Rnd8BlockRefStore;:
class ct Rnd16BTockRefStore;
class ct Rnd32BlockRefStore;

The file "tuning/chn/blockrefstore.h’ contains the following declarations:

class ct_Chn_BlockRefStore;
class ct_Chn8BlockRefStore;
class ct_Chnl6BlockRefStore;
class ct Chn32BTockRefStore;

1.5.7 Pack Store (tuning/packstore.hpp)

A pack store is optimized for many successive memory allocations which can be released in a single
step. Typical use cases are temporary data inside of a complex calculation.

The internal memory layout algorithm is very simple. A pack store uses successively the space of a data
page. Memory requests may have an arbitrary size. If the remaining space of the data page is too small
for a new memory request, a new data page is used. If the size of a memory request is greater than a
configurable minimum size, the new memory block uses its own data page.

Reallocation and release of single memory blocks are not implemented. However, a pack store can
release the entire memory by calling the method FreeAll. If b_keepPage equals true, the first data page is
not released.

This special implementation uses a class with virtual functions instead of template parameters. The pack
store uses a helper block for managing pointers to the pages. Different store classes can be used for the
management block and the data pages.

The implementation of the pack store consists of the base class ct _PackStoreBase with some virtual
methods and the derived class ct_PackStore with access to two store objects.

Class Declaration

class ct_PackStoreBase

{
public:
typedef t Ulnt t_Size;
typedef void * t Position;
protected:
virtual void * ReallocPtr (void * pv_mem, t Size o _size) = 0;
virtual t _UInt MaxDataAlloc () const = 0;
virtual void * AlTocData (t_Size o_size) = 0;
virtual void FreeData (void * pv_mem) = 0;
pubTlic:
ct_PackStoreBase ();
virtual ~ct_PackStoreBase () { }
void Swap (ct_PackStoreBase & co_swap);

Spirick Tuning Reference Manual Page 38

static inline t Ulnt StorelnfoSize ();

inTine t_UInt MaxAlloc ():

t_Position Alloc (t_Size o_size);

t_Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o _pos);

static inline void * AddrOf (t_Position o_pos);

static inTine t Position PosOf (void * pv_adr);

t Size SizeOf (t_Position o _pos);

t Size RoundedSize0f (t_Position o_pos);

boo CanFreeAll ();

void FreeAll (bool b_keepPage = false);

bool Init (t_Size o_align. t Size o pageSize,

t Size o ownPageSize = 0);

Additional Methods

bool Init (t Size o align, t Size o pageSize, t Size o ownPageSize = 0);

Initializes an empty pack store. The parameter o_align determines the alignment of memory blocks (1, 2,
4, 8 or 16 bytes). The parameter 0_pageSize determines the size of data pages. The optional parameter
0_ownPageSize determines the minimum size of own data pages (default: 0 pageSize / 4). If the size of a
memory request is greater than this minimum size, the new memory block uses its own data page.

Class Declaration

class ct_PackStore: public ct_PackStoreBase

{

protected:
virtual void * ReallocPtr (void * pv_mem, t Size o size);
virtual t Ulnt MaxDataAlloc () const:
virtual void * AllocData (t_Size o_size);
virtual void FreeData (void * pv_mem);

public:

~ct_PackStore ();
s
Methods

void * ReallocPtr (void * pv_mem, t Size o_size);

Reallocate memory for the pointer management block.

t UInt MaxDataAlloc () const;

Returns the maximum size of a contiguous data block.

void * AllocData (t Size o size);

Allocate a single data page.

void FreeData (void * pv_mem);

Release a single data page.

~ct_PackStore ():

Within the destructor of the derived class all memory must be released. The destructor of the base class
has no access to the virtual methods implemented in the derived class.

Spirick Tuning Reference Manual Page 39

1.5.8 Pack Store 2 (tuning/packstore.h)

The class template gct_PackStore provides an alternative implementation of the pack store concept (see
above). The template parameter t staticStore must have the common store interface. All methods of
t_staticStore must be declared static, examples are ct_Rnd Store and ct_Chn_Store. Every directory of a
global store contains a file 'packstore.h’ (predefined template instance).

Reallocation and release of single memory blocks are not implemented. However, a pack store can
release the entire memory by calling the method FreeAll. If b_keepPage equals true, the first data page is

not released.

Template Declaration

template <class t_staticStore>

class gct _PackStore

{
public:

typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

typedef void *

inline void

static inline t UInt
static inline t UInt

t_Position
inTine t_Position
inTine void

t_Position;

gct _PackStore ();
~gct_PackStore ();
Swap (gct_PackStore & co_swap);

StorelInfoSize ();
MaxAlloc ():

Alloc (t _Size o_size);
Realloc (t_Position o _pos, t Size o size);
Free (t_Position o _pos);

static inline void * AddrOf (t_Position o _pos);
static inline t Position PosOf (void * pv_adr);

static inline t_Size
static inline t Size

static inline bool
void

bool

1%

Additional Methods

SizeOf (t_Position o _pos);
RoundedSizeOf (t_Position o_pos);

CanFreeAll ();
FreeAll (bool b _keepPage = false);

Init (unsigned u_align, unsigned u_pageExp,
t Size o_ownPageSize = 0);

bool Init (unsigned u_align, unsigned u pagekxp, t Size o _ownPageSize = 0);

Initializes an empty pack store. The parameter u_align determines the alignment of memory blocks (1, 2,
4, 8 or 16 bytes). The parameter u_pageExp (>= 7) determines the size of data pages (2"exp). The optional
parameter o_ownPageSize determines the minimum size of own data pages (default: PageSize / 4). If the
size of a memory request is greater than this minimum size, the new memory block uses its own data

page.

Spirick Tuning Reference Manual Page 40

2 OBJECT MANAGEMENT

2.1 Container

2.1.1 Container Interface

Containers and collections are two different concepts to manage sets of C++ objects. A collection can
manage a polymorphic set of objects which are derived from a common base class. A container
manages a uniform set of objects. It also contains the objects itself, i.e. the underlying memory. A
container can optimize memory usage in many different ways.

Like store classes, all container classes share a common interface. So it's easy to switch between
multiple container implementations.

Template Declaration

template <class t_obj>
class gct_AnyContainer

{

public:
typedef t Ulnt t_Length;
typedef void * t_Position;
typedef t_obj t Object;

gct_AnyContainer ();
gct_AnyContainer (const gct AnyContainer & co);
~gct_AnyContainer ();

gct_AnyContainer & operator = (const gct _AnyContainer & co_asgn);

void Swap (gct_AnyContainer & co_swap);

bool IsEmpty () const;

t_Length Getlen () const;

t _Position First () const:

t Position Last () const;

t_Position Next (t_Position o _pos) const;

t Position Prev (t_Position o _pos) const;

t Position Nth (t_Length u_idx) const;

t Object * GetObj (t_Position o _pos) const;

t Position AddObj (const t Object * po obj = 0);

t Position AddObjBefore (t_Position o _pos. const t Object * po obj = 0):
t Position AddObjAfter (t _Position o _pos, const t Object * po obj = 0);
void AppendObj (const t Object * po_obj = 0, t Length o _count = 1);
void TruncateObj (t_Length o _count = 1);

t Position DelObj (t Position o pos);

void DelAlT ();

t_Position FreeObj (t_Position o pos);

void FreeAll ();

IE

Object Type Requirements

Spirick Tuning Reference Manual Page 41

The Spirick container interface consists of a basic interface (described in this section) and various
enhancements (e.g. the comp-container interface). The object type requirements of the basic interface
are very simple. A class type must contain a default and a copy constructor, no other requirements have
to be fulfilled. Numeric and pointer types can also be used.

Object Constructor, Destructor

A container contains the objects itself, i.e. the underlying memory, and it calls the constructors and
destructors of the managed objects. If a new object is added to a container, the default constructor is
called. If an existing object is added to a container, the copy constructor of a new object is called and
the existing object remains unchanged. If an object is deleted from a container, the destructor is called
and the memory is released to the underlying store object.

Copy/Move Object Memory

The C++ standard (ISO/IEC 14882) states that only "trivially copyable" objects may be copied or moved
by memcpy and memmove. However, in almost all cases C++ objects can be copied or moved by memcpy and
memmove without any side effects. Another possibility is to copy the objects by copy constructors and
assignment operators. In this case the performance would significantly drop. That's why some Spirick
containers copy and move objects by memcpy and memmove. Note that there are some rare cases where
objects must not be copied by memcpy and memmove, e.g. lowlevel mutex objects.

Stores and Containers

There are some similarities between Spirick stores and containers. Like stores the containers use
position values to manage their contents. The store method Alloc is similar to the container method
AddObj. The store method AddrOf is similar to the container method GetObj. The store method Free is
similar to the container method Del0bj etc.

Validity of Position Values

Spirick stores ensure the validity of position values until the method Free is called. In contrast, some
Spirick containers ensure the validity of position values and some do not. For example, list containers
(like store objects) ensure the validity of position values. But, if an array container was modified by
adding or deleting an object, the position values of all subsequent entries become invalid.

Data Types
typedef t UInt t_Length;

The nested type t _Length describes the number of contained objects, examples are t Ulnt, t UInts,
t UIntle and t UInt32. If t_Length is defined as t UInt8, the maximum number of entries will be 255. The
size of the container object can be reduced in some cases.

typedef void * t Position;

Like store classes, container classes use position values to manage their objects, examples are void *,

t UlInt, t UInt8, t UIntle and t UInt32. The position value zero is invalid per definition. The method GetObj
returns a pointer to the object at a specific position. If the position type is void *, the position value may
(or may not) be equal to the object pointer. Hence, always use the method GetObj to access objects and
do not use the position value itself.

typedef t obj t Object;

The nested type t Object corresponds to the template parameter t obj. It can be used by derived
classes.

Constructors, Destructor, Assignment, Swap
gct_AnyContainer ();

Initializes an empty container object.

Spirick Tuning Reference Manual Page 42

gct AnyContainer (const gct AnyContainer & co_init);
The copy constructor copies the contents of an existing container by using the copy constructors of the
contained objects.

~gct _AnyContainer ();

The destructor clears the container by calling the method DelATT.

gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);
The assignment operator copies the contents of an existing container by using the copy constructors of
the contained objects.

void Swap (gct_AnyContainer & co_swap):

Swaps the contents of the two container objects.

Number of Objects
bool IsEmpty () const;

Returns true if the container is empty.

t Length GetlLen () const;

Returns the number of contained objects.

Iterate over Objects
t_Position First () const;

Returns the position of the first object or zero if the container is empty.

t_Position Last () const;

Returns the position of the last object or zero if the container is empty.

t _Position Next (t Position o pos) const;
Returns the position of the next object or zero if 0_pos is the position of the last object. 0 pos must be a
valid position value.

t _Position Prev (t _Position o_pos) const;
Returns the position of the previous object or zero if o _pos is the position of the first object. o_pos must
be a valid position value.

t Position Nth (t_Length u_idx) const;

Returns the position of the nth object (0 < u_idx <= GetlLen).
Note that there is no zeroth object. The first object has index 1.

Access to Objects
t Object * GetObj (t Position o _pos) const;

Returns a pointer to the object at position 0 _pos. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 43

Add Objects

t Position AddObj (const t Object * po obj = 0);
Adds an object and returns the position of the new object. The logical position of the new object
depends on the container implementation. If po_obj equals zero, the new object is created by the default
constructor, otherwise the copy constructor is used.

t Position AddObjBefore (t Position o_pos, const t Object * po obj = 0);
Adds an object before a specific position and returns the position of the new object. If o_pos equals zero,
the new object is appended after the last object, i.e. it will be the new last object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

t Position AddObjAfter (t Position o pos, const t Object * po obj = 0);

Adds an object after a specific position and returns the position of the new object. If 0 pos equals zero,
the new object is inserted before the first object, i.e. it will be the new first object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

Append/Truncate Multiple Objects

void AppendObj (const t Object * po obj = 0, t_Length o count = 1);
Adds o _count objects at the end of the container. If po_obj equals zero, the new objects are created by
the default constructor, otherwise the copy constructor is used.

void TruncateObj (t Length o_count = 1);

Deletes o_count objects at the end of the container.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Objects
t_Position DelObj (t_Position o_pos);

Deletes the object at position o_pos. Calls the destructor of the object and releases the corresponding
memory. 0_pos must be a valid position value. The method returns Next (o _pos), i.e. the position of the
next object or zero, if the last object was deleted.

void DelAll ();
Deletes all contained objects. Calls the destructor of the objects and releases the corresponding
memory.

t Position FreeObj (t Position o_pos):

Deletes the object at position 0 pos without calling the destructor. This method is slightly faster than
DelObj. o_pos must be a valid position value. The method returns Next (o _pos), i.e. the position of the next
object or zero, if the last object was deleted.

void FreeAll ();

Releases the entire memory without calling the destructor of the contained objects.

Spirick Tuning Reference Manual Page 44

Exception Handling

While working with containers, exceptions may occur inside of constructors and destructors of
contained objects. Spirick container classes contain minimal exception handlers. These handlers ensure
the consistency of the container object and pass the exception unchanged to a higher-level handler.

The following rules apply:

If the exception occurs inside of the constructor while adding a new object (AddObj), the container
remains unchanged (no new object will be added).

If the exception occurs inside of the destructor while deleting an object (De10bj), the object will be
deleted anyway.

If the exception occurs inside of a constructor while adding several objects (AppendObj), the insertion is
aborted. All previously added objects remain unchanged.

If the exception occurs inside of a destructor while deleting several objects (TruncateObj), the deletion is
aborted. The object causing the exception will be deleted anyway.

If the exception occurs inside of a destructor while deleting all objects (DelA11), the deletion will be
continued. Afterwards the container will be empty.

If the exception occurs inside of the container copy constructor or assignment operator, the method
DelA1T will be called.

2.1.2 Container Operations

Insert, Copy and Delete Objects

The following sample code demonstrates some simple container operations. The class ct_Int is
described in the section 'Sample Programs’.

ct _Int co_int = 1;

ct_Int * pco_int;

gct_AnyContainer <ct_Int> co_container;
gct_AnyContainer <ct_Int>::t Position o_pos;

// Add a new object by calling the default constructor
0_pos = co_container. AddObj ():

// Access the object and initialize it
pco_int = co_container. GetObj (o_pos);
(* pco_int) = 2;

// Copy an existing object into the container
0_pos = co_container. AddObj (& co_int);

// Delete a single object
co_container. DelObj (o _pos);

Iterate Forward

The following sample code demonstrates a forward iteration over a container.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t Position o_pos;

for (o_pos = co_container. First ();
0 _pos !=0;
0 _pos = co_container. Next (o_pos))

float * pf = co_container. GetObj (o0 _pos);
/.

}

Spirick Tuning Reference Manual Page 45

Iterate Backward

The following sample code demonstrates a backward iteration over a container.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t Position o_pos;

for (o_pos = co_container. Last ()
0 pos !=0;
0_pos = co_container. Prev (o_pos))
{
float * pf = co_container. GetObj (o _pos);
/.

}

Iterate and Modify

The following sample code demonstrates how to iterate and modify a container.

gct_AnyContainer <float> co_container;
gct AnyContainer <float>::t Position o_pos;

for (o_pos = co_container. First ();

0 pos !=0;

0 pos = /* delete entry ? */ 7
co_container. DelObj (o_pos) :
co_container. Next (o_pos))

{
float * pf = co_container. GetObj (o _pos);
/o

}

Alternatively a while loop can be used.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t Position o_pos;

0 pos = co_container. First ();

while (o_pos != 0)
{
float * pf = co_container. GetObj (0 _pos);
/.
if (/* delete entry ? */)
0_pos = co_container. DelObj (o _pos);
else
0_pos = co_container. Next (o _pos);

}

2.1.3 Extended Container (tuning/extcont.h)

The class template gct_ExtContainer enhances the usability of the basic container interface. Example: To
access the nth object of a container, two methods must be called.

gct_AnyContainer <float> co_floats;
/o
float f = co_floats. GetObj (co_floats. Nth (5));

For such a case the class template gct_ExtContainer provides the method GetNthObj.

Spirick Tuning Reference Manual Page 46

The template parameter t _container must comply with the basic container interface. It is used as the
base class of the extended container.

Base Class

gct_AnyContainer (see above 'Container Interface')

Template Declaration

template <class t _container>

class gct _ExtContainer: public t_container
{

public:
inTine t _Object
inline t Object
inTine t _Object
inline t Object
inline t Object

GetFirstObj () const;

GetLastObj () const;

GetNextObj (t_Position o _pos) const;
GetPrevObj (t_Position o pos) const;
GetNthObj (t_Length u_idx) const;

b S

inTine t_Position AddObjBeforeFirst (const t Object * po obj = 0);

inline t _Position AddObjAfterLast (const t Object * po_obj = 0);

inTine t_Position AddObjBeforeNth (t_Length u_idx, const t Object * po_obj = 0);
inline t_Position AddObjAfterNth (t_Length u_idx, const t Object * po obj = 0);

t Object * GetNewObj (const t _Object * po obj = 0);

t Object * GetNewFirstObj (const t Object * po obj = 0);

t Object * GetNewLastObj (const t Object * po obj = 0);

t Object * GetNewObjBefore (t Position o _pos, const t Object * po_obj = 0)
t Object * GetNewObjAfter (t_Position o _pos, const t Object * po_obj = 0);

t Object * GetNewObjBeforeNth (t Length u_idx, const t Object * po obj = 0);
t Object * GetNewObjAfterNth (t_Length u_idx, const t Object * po_obj = 0)

inline t_Position DelFirstObj ();

inline t Position DelLastObj ()

inTine t_Position DelNextObj (t_Position o _pos);
inTine t_Position DelPrevObj (t_Position o _pos);
inTine t_Position DelINthObj (t_Length u_idx);

inline t_Position FreeFirstObj ()

inline t Position FreelLastObj ():

inTine t_Position FreeNextObj (t_Position o _pos);
inTine t_Position FreePrevObj (t _Position o_pos);
inline t_Position FreeNthObj (t_Length u_idx);

b

// Example of an implementation
template <class t_container>
inline gct ExtContainer <t container>:: t Object *
gct _ExtContainer <t container>:: GetNthObj (t Length u_idx) const

{
return GetObj (Nth (u_idx));

}

Access to Objects
t Object * GetFirstObj () const;

Returns a pointer to the first object. The container must contain at least one object.

t Object * GetLastObj () const:

Returns a pointer to the last object. The container must contain at least one object.

Spirick Tuning Reference Manual Page 47

t Object * GetNextObj (t Position o_pos) const;

Returns a pointer to the next object. o pos and Next (o_pos) must be valid position values.

t Object * GetPrevObj (t Position o_pos) const;

Returns a pointer to the previous object. o _pos and Prev (o0_pos) must be valid position values.

t Object * GetNthObj (t_Length u_idx) const;

Returns a pointer to the nth object (0 < u_idx <= GetLen).

Add Objects
t Position AddObjBeforeFirst (const t_Object * po_obj = 0);

Adds an object before the first object and returns the position of the new object. The new object will be
the new first object. If po_obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t Position AddObjAfterLast (const t Object * po obj = 0);

Adds an object after the last object and returns the position of the new object. The new object will be
the new last object. If po obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t Position AddObjBeforeNth (t Length u_idx, const t Object * po obj = 0);

Adds an object before the nth object and returns the position of the new object (0 < u_idx <= GetlLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

t Position AddObjAfterNth (t Length u_idx, const t Object * po obj = 0);

Adds an object after the nth object and returns the position of the new object (0 < u_idx <= GetlLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

Access to New Objects
t Object * GetNewObj (const t Object * po obj = 0);

Adds an object and returns a pointer to the new object. The logical position of the new object depends
on the container implementation. If po_obj equals zero, the new object is created by the default
constructor, otherwise the copy constructor is used.

t Object * GetNewFirstObj (const t _Object * po obj = 0);

Adds an object before the first object and returns a pointer to the new object. The new object will be
the new first object. If po_obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t Object * GetNewLastObj (const t Object * po obj = 0);

Adds an object after the last object and returns a pointer to the new object. The new object will be the
new last object. If po_obj equals zero, the new object is created by the default constructor, otherwise
the copy constructor is used.

t Object * GetNewObjBefore (t Position o pos, const t Object * po_obj = 0);

Adds an object before a specific position and returns a pointer to the new object. If o_pos equals zero,
the new object is appended after the last object, i.e. it will be the new last object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

Spirick Tuning Reference Manual Page 48

t_Object * GetNewObjAfter (t Position o _pos, const t Object * po obj = 0);

Adds an object after a specific position and returns a pointer to the new object. If o_pos equals zero, the
new object is inserted before the first object, i.e. it will be the new first object. If po_obj equals zero, the
new object is created by the default constructor, otherwise the copy constructor is used.

t Object * GetNewObjBeforeNth (t Length u idx, const t Object * po obj = 0);

Adds an object before the nth object and returns a pointer to the new object (0 < u_idx <= GetlLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

t Object * GetNewObjAfterNth (t Length u_idx, const t Object * po obj = 0);

Adds an object after the nth object and returns a pointer to the new object (0 < u_idx <= GetlLen). If po_ob]
equals zero, the new object is created by the default constructor, otherwise the copy constructor is
used.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Objects
t Position DelFirstObj ();

Deletes the first object. Calls the destructor of the object and releases the corresponding memory. The
container must contain at least one object. The method returns the position of the new first object or
zero, if the last object was deleted.

t_Position DellLastObj ()

Deletes the last object. Calls the destructor of the object and releases the corresponding memory. The
container must contain at least one object. The method always returns zero, because the last object
was deleted.

t_Position DelNextObj (t_Position o_pos);:

Deletes the object at position Next (o _pos). Calls the destructor of the object and releases the
corresponding memory. o _pos and Next (o_pos) must be valid position values. The method returns Next
(Next (o_pos)), i.e. the position of the next object of the deleted object or zero, if the last object was
deleted.

t Position DelPrevObj (t Position o_pos);

Deletes the object at position Prev (o _pos). Calls the destructor of the object and releases the
corresponding memory. o _pos and Prev (o _pos) must be valid position values. The method returns o _pos,
because it is the position of the next object of the deleted object.

t Position DeINthObj (t Length u_idx);

Deletes the nth object (0 < u_idx <= GetlLen). Calls the destructor of the object and releases the
corresponding memory. The method returns Next (Nth (u_idx)), i.e. the position of the next object of the
deleted object or zero, if the last object was deleted.

t Position FreeFirstObj ();

Deletes the first object without calling the destructor. The container must contain at least one object.
The method returns the position of the new first object or zero, if the last object was deleted.

Spirick Tuning Reference Manual Page 49

t Position FreelLastObj ();

Deletes the last object without calling the destructor. The container must contain at least one object.
The method always returns zero, because the last object was deleted.

t_Position FreeNextObj (t_Position o_pos);

Deletes the object at position Next (o_pos) without calling the destructor. o pos and Next (o_pos) must be
valid position values. The method returns Next (Next (o _pos)), i.e. the position of the next object of the
deleted object or zero, if the last object was deleted.

t _Position FreePrevObj (t Position o_pos);

Deletes the object at position Prev (o_pos) without calling the destructor. o pos and Prev (o _pos) must be
valid position values. The method returns o _pos, because it is the position of the next object of the
deleted object.

t Position FreeNthObj (t Length u_idx);

Deletes the nth object without calling the destructor (0 < u_idx <= GetLen). The method returns Next (Nth
(u_idx)), i.e. the position of the next object of the deleted object or zero, if the last object was deleted.

2.2 Array and List Containers

2.2.1 Array Containers (tuning/array.h)

Array containers are optimized for size. Like static arrays, array containers store objects contiguous,
without any management overhead. If an array container was modified by adding or deleting an object,
all subsequent entries are moved by memmove and the position values of these objects become invalid. The
validity of memory addresses depends on the implementation of the underlying block class. Array
containers provide direct access to the nth object. The method AddObj adds the new object at the end of
the array.

The first template parameter t obj is the type of the contained objects. The second template parameter
t block must at least contain the item block interface. It is used as the base class of the array container.
The helper class template gct_FixItemArray passes the size of an object to the class template

gct FixItemBlock.

Base Class

gct_...ItemBlock (see above 'ltem Block')

Template Declaration

template <class t_obj, class t_block>
class gct Array: public t block
{
public:
typedef t block::t Size t Length;
typedef t block::t Size t Position;

typedef t_obj t Object;

inline gct Array (O);

inline gct_Array (const gct Array & co_init);
inline ~gct_Array ();

inline gct Array & operator = (const gct Array & co_asgn);
inline bool IsEmpty () const;

inTine t_Length GetMaxLen () const:

Spirick Tuning Reference Manual Page 50

inline t_Length GetLen () const:

inline t_Position First () const;

inTine t _Position Last () const;

inTine t_Position Next (t_Position o_pos) const;
inline t _Position Prev (t_Position o _pos) const;
inTine t_Position Nth (t_Length u_idx) const;

inTine t _Object * GetObj (t_Position o _pos) const;
inTine t_Position AddObj (const t _Object * po_obj = 0);
inTine t_Position AddObjBefore (t_Position o _pos, const t Object * po obj = 0);

t Position AddObjAfter (t_Position o _pos, const t Object * po obj = 0);
void Append0bj (const t Object * po obj = 0, t_Length o _count = 1);
void TruncateObj (t_Length o_count = 1);

t Position DelObj (t_Position o_pos):

void DelATT ();

inline t _Position FreeObj (t_Position o _pos);

inline void FreeAll ();

inline void SetPageSize (t_Size o0 size);

b

Additional Methods
t Length GetMaxLen () const;

Returns the maximum number of contained objects.

void SetPageSize (t Size o_size);

Sets the page size, if ct_PageBlock is used as template parameter t block.

Template Declaration

template <class t _obj, class t_block>
class gct FixItemArray:
public gct Array <t obj, gct FixItemBlock <t block, sizeof (gct ArrayNode <t obj>)> >
{
3

2.2.2 Array Instances (tuning/xxx/array.h)

Some template instances are predefined to easily use array containers. The macro ARRAY DCLS(0bjJ)
generates for each wrapper class of a global store one array template.

The macro
ARRAY DCLS (Any)
expands to:

template <class t obj> class gct Any Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any Block> > { };
template <class t _obj> class gct Any8Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any8Block> > { };
template <class t_obj> class gct_Anyl6Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Anyl6Block> > { };
template <class t_obj> class gct Any32Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any32Block> > { };

Spirick Tuning Reference Manual Page 51

Every directory of a global store contains a file 'array.h".
The file "tuning/std/array.h’ contains the following declarations:

template <class t_obj> class gct Std Array;
template <class t obj> class gct Std8Array;
template <class t _obj> class gct Stdl6Array;
template <class t obj> class gct Std32Array;

The file 'tuning/rnd/array.h’ contains the following declarations:

template <class t obj> class gct Rnd Array;
template <class t _obj> class gct Rnd8Array;
template <class t obj> class gct Rndl6Array;
template <class t obj> class gct Rnd32Array;

The file "tuning/chn/array.h’ contains the following declarations:

template <class t obj> class gct Chn Array;
template <class t obj> class gct Chn8Array;
template <class t obj> class gct Chnl6Array;
template <class t obj> class gct Chn32Array;

2.2.3 List Containers (tuning/dlist.h)

List containers are optimized for fast random modification and for validity of position values. If a list
entry is added or deleted, only the direct neighbors are affected. All other list entries remain unchanged.
The position value of a list entry remains valid until the entry is deleted. This feature is important if
references (position values) to list entries are stored permanently.

The validity of memory addresses depends on the implementation of the underlying store class. If a
predefined global store or a page-based block store is used, memory addresses of list entries remain
valid. If a non-paged block store is used, memory addresses of list entries can change, if the size of the
underlying block changes.

Note that every list node contains references (position values) to the direct neighbors. Note also that
every list node is allocated separately. If a predefined global store is used, rounding and management
overhead occurs at every single list node. This overhead can be avoided by using a block store.

The first template parameter t obj is the type of the contained objects. The second template parameter
t _store must at least contain the store interface. The list class contains a data member of type t store.
The additional method GetStore provides access to the store object. The method AddObj adds the new
object at the end of the list.

Template Declaration

template <class t obj, class t store>
class gct DList
{
public:
typedef t_store::t Size t Length;
typedef t_store::t Position t Position;

typedef t_obj t Object;

inline gct DList ()

inTine gct DList (const gct DList & co_init);
inline ~gct DList ();

inline gct DList & operator = (const gct DList & co_asgn);
void Swap (gct DList & co _swap);

Spirick Tuning Reference Manual Page 52

inline bool Iskmpty () const;
inline t_Length GetLen () const;

inTine t _Position First () const;

inline t_Position Last () const:

inline t _Position Next (t_Position o _pos) const;
inTine t_Position Prev (t_Position o _pos) const;
t Position Nth (t_Length u_idx) const;

inTine t Object * GetObj (t_Position o _pos) const;
inTine t_Position AddObj (const t _Object * po_obj = 0);
inTine t_Position AddObjBefore (t_Position o _pos, const t Object * po obj = 0);

t Position AddObjAfter (t_Position o _pos, const t Object * po obj = 0);
void Append0Obj (const t Object * po obj = 0, t_Length o _count = 1);
void TruncateObj (t_Length o_count = 1);

t Position DelObj (t_Position o _pos);

void DelATT ();

t Position FreeObj (t_Position o_pos):

void FreeAll ();

inline t _store * GetStore ();

1%

2.2.4 List Instances (tuning/xxx/dlist.h)

Some template instances are predefined to easily use list containers. The macro DLIST DCLS(0bjJ)
generates for each wrapper class of a global store one list template.

The macro
DLIST DCLS (Any)
expands to:

template <class t _obj> class gct Any DList:

public gct ExtContainer <gct DList <t obj, ct Any Store> > { };
template <class t_obj> class gct Any8DList:

public gct ExtContainer <gct DList <t obj, ct Any8Store> > { };
template <class t _obj> class gct AnyleDList:

public gct ExtContainer <gct DList <t obj, ct AnyléStore> > { };
template <class t _obj> class gct Any32DList:

public gct ExtContainer <gct DList <t obj, ct Any32Store> > { };

Every directory of a global store contains a file 'dlist.h".

The file "tuning/std/dlist.h' contains the following declarations:
template <class t_obj> class gct Std DList;

template <class t obj> class gct Std8DList;

template <class t obj> class gct Stdl6éDList;

template <class t obj> class gct Std32DList;

The file "tuning/rnd/dlist.h’ contains the following declarations:
template <class t obj> class gct Rnd DList;

template <class t _obj> class gct Rnd8DList;

template <class t obj> class gct RndléDList;

template <class t obj> class gct Rnd32DList;

The file 'tuning/chn/dlist.h’ contains the following declarations:

Spirick Tuning Reference Manual Page 53

template <class t obj> class gct Chn DList;
template <class t _obj> class gct Chn8DList;
template <class t obj> class gct Chnl6DList;
template <class t obj> class gct Chn32DList;

2.3 Sorted Containers

2.3.1 Sorted Arrays (tuning/sortarr.h)

Sorted array containers are very similar to normal array containers. The main difference between these
two concepts is the order in which objects are positioned. The object type of a sorted array container
must provide a comparison function 'operator <'. New objects are added by AddObj. They are sorted
automatically in ascending order. Adding multiple equal objects is possible. They are positioned in the
order they have been added.

Note that using the methods AddObjBefore and AddObjAfter is allowed, if the position is correct with
respect to 'operator <'. The method AppendObj is not supported.

If the object type additionally provides the comparison function 'operator ==', the sorted array can be
extended by the comp-container interface (see below 'Comp-Container’). In this case, an efficient binary
search is used.

The first template parameter t obj is the type of the contained objects. The second template parameter
t block must at least contain the item block interface. It is used as the base class of the sorted array
container. The helper class template gct FixItemSortedArray passes the size of an object to the class
template gct_FixItemBlock.

Base Class

gct_...ItemBlock (see above 'ltem Block')

Template Declaration

template <class t obj, class t_block >
class gct_SortedArray: public t block
{
public:
typedef t block::t Size t Length;
typedef t block::t Size t Position;

typedef t_obj t Object;

inline gct_SortedArray ();

inline gct_SortedArray (const gct SortedArray & co_init);
inline ~gct_SortedArray ();

inline gct SortedArray & operator = (const gct SortedArray & co_asgn);
inline bool IsEmpty () const:

inline t_Length GetMaxLen () const;

inTine t_Length GetLen () const:

inTine t Position First () const:

inline t Position Last () const;

inTine t _Position Next (t_Position o _pos) const;
inline t _Position Prev (t_Position o _pos) const;
inTine t_Position Nth (t_Length u_idx) const;

inTine t Object * GetObj (t_Position o _pos) const;

Spirick Tuning Reference Manual Page 54

t Position AddObj (const t Object * po obj);
inTine t _Position AddObjBefore (t_Position o _pos, const t _Object * po obj);

t Position AddObjAfter (t_Position o _pos, const t Object * po obj);

void AppendObj (const t Object * po_obj = 0, t _Length o _count = 1);
void TruncateObj (t_Length o _count = 1);

t Position DelObj (t_Position o _pos);

void DelAlT ();

inTine t_Position FreeObj (t _Position o_pos);

inline void FreeAll ();

inline void SetPageSize (t Size o size);

t Position Before (const t Object * po_obj) const;

1%

Additional Methods
t_Length GetMaxLen () const;

Returns the maximum number of contained objects.

void SetPageSize (t Size o size);

Sets the page size, if ct_PageBlock is used as template parameter t block.

t Position Before (const t Object * po_obj) const;

Returns the position of the last object which is smaller than or equal to * po_obj. Returns zero if * po_obj
is smaller than the first object. Returns Last () if * po_obj is greater than or equal to the last object.

Template Declaration

template <class t_obj, class t _block>
class gct _FixItemSortedArray:
public gct SortedArray <t obj, gct FixItemBlock <t block, sizeof (gct SortedArrayNode <t obj>)> >
{
)

2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h)

Some template instances are predefined to easily use sorted array containers. The macro
SORTEDARRAY DCLS(0bj) generates for each wrapper class of a global store one sorted array template.

The macro
SORTEDARRAY _DCLS (Any)
expands to:

template <class t obj> class gct_Any SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any Block> > { };
template <class t obj> class gct Any8SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any8Block> > { };
template <class t obj> class gct Anyl6SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct AnyléBlock> > { };
template <class t_obj> class gct_Any32SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any32Block> > { };

Every directory of a global store contains a file 'sortedarray.h’.

Spirick Tuning Reference Manual Page 55

The file 'tuning/std/sortedarray.h’ contains the following declarations:

template <class t _obj> class gct Std SortedArray;
template <class t_obj> class gct Std8SortedArray;
template <class t _obj> class gct Stdl6SortedArray;
template <class t _obj> class gct Std32SortedArray;

The file "tuning/rnd/sortedarray.h’ contains the following declarations:

template <class t_obj> class gct Rnd SortedArray;
template <class t obj> class gct Rnd8SortedArray;
template <class t_obj> class gct Rndl6SortedArray;
template <class t _obj> class gct Rnd32SortedArray;

The file "tuning/chn/sortedarray.h’' contains the following declarations:

template <class t obj> class gct Chn SortedArray;
template <class t _obj> class gct Chn8SortedArray;
template <class t obj> class gct Chnl6SortedArray;
template <class t obj> class gct Chn32SortedArray;

2.3.3 Hash Tables (tuning/hashtable.h)

Sorted arrays and hash tables are two different concepts for access acceleration in container classes.
Sorted arrays are suitable for a small amount of data. If an array container becomes too large,
modifications become time consuming. Hash tables are suitable for larger amounts of data. If a hash
table contains only a few objects, the management overhead is relatively high.

The Spirick hash table container is a special implementation of the common hash table concept. It is
implemented as an array of arrays. The outer array has a fixed size, the so-called "hash size'. The result
of "hash value' modulo 'hash size' is an index for this array. An inner array contains all objects which
have the same index value.

To reduce the number of collisions of index values, the hash size should be a prime number. The
constants u_HashPrimel to u_HashPrimel6 are predefined. The hash size can be set by the method
SetHashSize while the container is empty. The default value is u_HashPrime4.

The object type of a hash table must provide a hash function GetHash returning an unsigned integer
value. New objects are added by AddObj. The methods AddObjBefore, AddObjAfter, AppendObj and TruncateObj
are not supported. If the object type additionally provides the comparison function 'operator ==', the
hash table can be extended by the comp-container interface (see below 'Comp-Container'). In this case,
an efficient hash search is used.

The first template parameter t obj is the type of the contained objects. The second template parameter
t block must at least contain the block interface, e.g. ct Chnl6Block. It is used for inner and outer arrays.

Note that the position type of a hash table is a class containing two data members of type

t block::t Size. Using t UIntl6 or t UInt32 can improve performance. If a hash table container was
modified by adding or deleting an object, the position values of other objects become invalid.

Template Declaration

const unsigned u_HashPrimel 1013;
const unsigned u HashPrime2 = 2039;

const unsigned u_HashPrimed = 4079;
const unsigned u_HashPrime8 = 8179;
const unsigned u_HashPrimelé = 16369;

Spirick Tuning Reference Manual Page 56

template <class t obj, class t block>
class gct HashTable

{
public:

typedef t block::t Size t _Length;

typedef gct HashTablePosition <t block> t Position;

typedef t_obj t Object;
gct HashTable ();

void Swap (gct HashTable & co_swap);

inline bool IsEmpty () const;

inline t_Length GetLen () const;

t Position First () const;

t Position Last () const;

t Position Next (t_Position o _pos) const;

t Position Prev (t_Position o _pos) const;

t Position Nth (t_Length u_idx) const;

inTine t _Object * GetObj (t_Position o _pos) const;

t Position AddObj (const t _Object * po obj);
t Position AddObjBefore (t_Position o pos, const t _Object * po obj);
t Position AddObjAfter (t_Position o pos, const t Object * po _obj);
void Append0Obj (const t Object * po obj = 0, t_Length o _count = 1);
void TruncateObj (t_Length o _count = 1);
t Position Del0bj (t_Position 0 _pos);
void DelA1T ();
t Position FreeObj (t_Position o_pos);
void FreeAll ();
void SetHashSize (t_Length o size);
inline t_Length GetHashSize () const;
b
Constants
const unsigned cu HashPrimel = 1013;
const unsigned cu_HashPrime2 = 2039;
const unsigned cu HashPrime4 = 4079;
const unsigned cu HashPrime8 = 8179;

const unsigned cu HashPrimel6 = 16369;

These constants are recommended values for the hash size.

Additional Methods
void SetHashSize (t Length o size);

Sets the hash size while the container is empty.

t_Length GetHashSize () const;

Returns the hash size.

2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)

Some template instances are predefined to easily use hash table containers. The macro
HASHTABLE _DCLS(Obj) generates for each wrapper class of a global store one hash table template.

Spirick Tuning Reference Manual Page 57

The macro

HASHTABLE_DCLS (Any)

expands to:

template
public
template
public
template
public
template
public

<class t_obj>

gct_ExtContainer <gct HashTable <t obj,

<class t_obj>

gct_ExtContainer <gct HashTable <t obj,

<class t_obj>

gct_ExtContainer <gct HashTable <t obj,

<class t_obj>

gct_ExtContainer <gct HashTable <t _obj,

class gct_Any HashTable:
ct_Any Block> > { }:
class gct_Any8HashTable:
ct_Any8Block> > { };
class gct_Anyl6HashTable:
ct_Anyl6Block> > { };
class gct_Any32HashTable:
ct_Any32Block> > { };

Every directory of a global store contains a file "hashtable.h".

The file "tuning/std/hashtable.h’ contains the following declarations:

template
template
template
template

The file

template
template
template
template

The file

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Std HashTable;
class gct Std8HashTable;
class gct Stdl6HashTable;
class gct Std32HashTable;

"tuning/rnd/hashtable.h’ contains the following declarations:

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Rnd HashTable;
class gct Rnd8HashTable;
class gct Rndl6HashTable;
class gct Rnd32HashTable;

"tuning/chn/hashtable.h' contains the following declarations:

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Chn HashTable;
class gct _Chn8HashTable;
class gct _ChnléHashTable;
class gct Chn32HashTable;

2.4 Block and Ref Lists

2.4.1

Block Lists

Various store classes can be used to implement list containers. If a block store is used, the resulting
container will be a 'block list'. Performance improvement: Every list node is allocated separately. If a
predefined global store is used, rounding and management overhead occurs at every single list node.
This overhead can be avoided by using a block store.

Note that every list node contains references (position values) to the direct neighbors. Using t UInt16 or
t UInt32 can reduce the size of list nodes. Note also that if a non-paged block store is used, memory
addresses of list entries can change, if the size of the underlying block changes.

2.4.2

Block List Instances (tuning/xxx/blockdlist.h)

Some template instances are predefined to easily use block list containers. The macro
BLOCK DLIST DCLS(Obj) generates for each wrapper class of a global store one block list template.

Spirick Tuning Reference Manual Page 58

The macro

BLOCK DLI
expands

template
public
template
public
template
public
template
public

ST DCLS (Any)

to:

<class t_obj> class gct_Any BlockDList:
gct_ExtContainer <gct DList <t obj, ct Any BlockStore> > { };
<class t_obj> class gct_Any8BlockDList:
gct_ExtContainer <gct DList <t obj, ct Any8BlockStore> > { };
<class t_obj> class gct AnyléBlockDList:
gct _ExtContainer <gct DList <t obj, ct Anyl6BlockStore> > { };
<class t_obj> class gct Any32BlockDList:
gct _ExtContainer <gct DList <t obj, ct Any32BlockStore> > { };

Every directory of a global store contains a file "blockdlist.h'.

The file "tuning/std/blockdlist.h’ contains the following declarations:

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Std BlockDList;
class gct Std8BlockDList;
class gct Stdl6BlockDList;
class gct Std32BTockDList;

The file "tuning/rnd/blockdlist.h’ contains the following declarations:

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Rnd BlockDList;
class gct Rnd8BlockDList;
class gct Rnd16BlockDList;
class gct Rnd32BTockDList;

The file "tuning/chn/blockdlist.h’ contains the following declarations:

template
template
template
template

2.4.3

Various store classes can be used to implement list containers. If a ref-store is used, the resulting
container will be a 'ref-list'. The class template gct RefDList simplifies the access to the reference

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Chn BlockDList;
class gct Chn8BlockDList;
class gct_Chnl6BlockDList:
class gct Chn32BlockDList;

Ref-Lists (tuning/refdlist.h)

counters of the embedded store object.

Base Classes

gct DList

Template Declaration

(see above 'List Containers')
gct_ExtContainer (see above 'Extended Container’)

template <class t_obj, class t_store>
class gct RefDList:
public gct ExtContainer <gct DList <t obj, t store> >

{
public:

inline void
inline void
inTine t_RefCount

IncRef (t_Position o _pos);
DecRef (t_Position o _pos);
GetRef (t_Position o_pos) const;

Spirick Tuning

Reference Manual

Page 59

inline bool IsATToc (t_Position o_pos) const;
inline bool IsFree (t_Position o_pos) const:

b

// Example of an implementation
template <class t obj, class t store>
inTine void gct RefDList <t obj, t store>::IncRef (t Position o_pos)

{

0 _Store. IncRef (o_pos);

}

Each single entry of a ref-list is associated with a reference counter. The reference counters can be used
directly or indirectly by special classes, e.g. smart pointers.

Note that the reference counter is associated with the memory of the ref-list entry and not with the C++
object. Deleting a ref-list entry and releasing the corresponding memory are two distinct steps. The ref-
list entry can be deleted by its owner, and the corresponding memory can be released by the reference
counter. If a ref-list entry is deleted and the reference counter is greater than zero, then all smart
pointers remain valid, but access to the C++ object is not allowed. In this way isolated islands in
complex, reference counting based data structures can be avoided.

If a ref-list entry is deleted (e.g. by Del0Obj), then the alloc flag of the corresponding ct _RefCount object is
cleared. If additionally the reference counter equals zero, the memory of the ref-list entry is released by
the underlying store object. Otherwise the reference counter can be changed by the ref-list methods
IncRef and DecRef, but access to the C++ object by calling the method Get0Obj is not allowed. If the
reference counter becomes zero, the memory is released by the underlying store object.

Methods

void IncRef (t_Position o _pos);

Increases the reference counter at position o _pos by 1.

void DecRef (t Position o _pos);

Decreases the reference counter at position o _pos by 1.

t_RefCount GetRef (t_Position o_pos) const;

Returns the numeric reference counter at position 0 _pos.

bool IsAlToc (t _Position o _pos) const;

Returns the alloc flag of position value o pos. If the method returns true, access by GetObj is allowed.

bool IsFree (t Position o _pos) const;

Returns true, if the alloc flag of position value o _pos is not set.

2.4.4 Ref-List Instances (tuning/xxx/refdlist.h)

Some template instances are predefined to easily use ref-list containers. The macro REF_DLIST DCLS(0bj)
generates for each wrapper class of a global store one ref-list template.

The macro
REF DLIST DCLS (Any)
expands to:

template <class t obj> class gct Any RefDList:
public gct RefDList <t obj, ct Any RefStore> { };

Spirick Tuning Reference Manual Page 60

template <class t obj> class gct Any8RefDList:
public gct RefDList <t obj, ct Any8RefStore> { };

template <class t obj> class gct Anyl6RefDList:
public gct RefDList <t obj, ct_Anyl6RefStore> { };

template <class t _obj> class gct_Any32RefDList:
public gct RefDList <t obj, ct Any32RefStore> { };

Every directory of a global store contains a file 'refdlist.h’.
The file 'tuning/std/refdlist.h’ contains the following declarations:

template <class t obj> class gct Std RefDList;
template <class t obj> class gct Std8RefDList;
template <class t obj> class gct Stdl6RefDList;
template <class t obj> class gct Std32RefDList;

The file "tuning/rnd/refdlist.h’ contains the following declarations:

template <class t _obj> class gct Rnd RefDList;
template <class t obj> class gct Rnd8RefDList;
template <class t obj> class gct Rndl6RefDList;
template <class t _obj> class gct Rnd32RefDList;

The file "tuning/chn/refdlist.h' contains the following declarations:

template <class t obj> class gct Chn RefDList;
template <class t obj> class gct Chn8RefDList;
template <class t obj> class gct Chnl6RefDList;
template <class t obj> class gct Chn32RefDList;

2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)

Various store classes can be used to implement list containers. If a block-ref-store is used, the resulting
container will be a 'block-ref-list'.

Some template instances are predefined to easily use block-ref-list containers. The macro
BLOCKREF _DLIST DCLS(Obj) generates for each wrapper class of a global store one block-ref-list template.

The macro
BLOCKREF _DLIST DCLS (Any)
expands to:

template <class t obj> class gct Any BlockRefDList:
public gct RefDList <t obj, ct_Any BlockRefStore> { };
template <class t obj> class gct Any8BlockRefDList:
public gct RefDList <t obj, ct Any8BlockRefStore> { };
template <class t_obj> class gct Anyl6BlockRefDList:
public gct RefDList <t obj, ct Anyl6BlockRefStore> { };
template <class t_obj> class gct_Any32BTockRefDList:
public gct RefDList <t obj, ct Any32BlockRefStore> { };

Every directory of a global store contains a file 'blockrefdlist.h’.
The file 'tuning/std/blockrefdlist.h' contains the following declarations:

template <class t obj> class gct Std BlockRefDList;
template <class t _obj> class gct Std8BlockRefDList;
template <class t obj> class gct Stdl6BlockRefDList;
template <class t obj> class gct Std32BlockRefDList;

Spirick Tuning Reference Manual Page 61

The file "tuning/rnd/blockrefdlist.h’ contains the following declarations:

template <class t _obj> class gct Rnd BlockRefDList;
template <class t_obj> class gct Rnd8BTlockRefDList;
template <class t obj> class gct Rnd16BlockRefDList;
template <class t _obj> class gct Rnd32BlockRefDList;

The file "tuning/chn/blockrefdlist.h’ contains the following declarations:

template <class t_obj> class gct Chn BlockRefDList;
template <class t obj> class gct Chn8BlockRefDList;
template <class t obj> class gct Chnl6BlockRefDList;
template <class t obj> class gct Chn32BlockRefDList;

2.5 Comp, Pointer and Map Containers

2.5.1 Comp-Containers (tuning/compcontainer.h)

The Spirick container interface consists of a basic interface (see above) and various enhancements (e.g.
the comp-container interface). The object type requirements of the basic interface are very simple. A
class type must contain a default and a copy constructor, no other requirements have to be fulfilled. If
the object type additionally provides the comparison function 'operator ==', the basic container can be
extended by the comp-container interface. Numeric and pointer types can also be used.

The class template gct_CompContainer implements some count, search and conditional methods. If the
base container is a normal (unsorted) array or a list, a linear search is used. Sorted arrays and hash
tables provide accelerated algorithms for searching objects. The template parameter t_container must at
least contain the basic container interface, e.g. gct Std32Array <float>. It is used as the base class of the
comp-container.

Base Classes

gct_AnyContainer (see above 'Container Interface')
[gct_ExtContainer (optional, see above 'Extended Container’)]

Template Declaration

template <class t_container>
class gct CompContainer: public t _container

{
public:
inline bool ContainsObj (const t Object * po obj) const;
t_Length CountObjs (const t Object * po_obj) const;
t Position SearchFirstObj (const t_Object * po obj) const;
t Position SearchLastObj (const t Object * po_obj) const;
t Position SearchNextObj (t _Position o _pos, const t Object * po_obj) const;
t Position SearchPrevObj (t_Position o _pos, const t Object * po_obj) const;

inTine t _Object * GetFirstEqualObj (const t Object * po_obj) const;
inTine t Object * GetlLastEqualObj (const t _Object * po_obj) const;

inline t _Position AddObjCond (const t Object * po_obj);
inTine t_Position AddObjBeforeFirstCond (const t_Object * po obj):
inTine t_Position AddObjAfterLastCond (const t Object * po_obj);

inTine t_Position DelFirstEqualObj (const t _Object * po obj);

Spirick Tuning Reference Manual Page 62

inline t_Position DellastEqualObj (const t Object * po obj);
inline t_Position DelFirstEqualObjCond (const t Object * po_obj);
inTine t _Position DellastEqualObjCond (const t Object * po obj);

b

Search for Objects
bool ContainsObj (const t Object * po obj) const;

Returns true, if a contained object is equal to * po_obj.

t_Length CountObjs (const t Object * po_obj) const;

Returns the number of objects which are equal to * po_obj.

t Position SearchFirstObj (const t _Object * po obj) const;

Returns the position of the first object which is equal to * po_obj or zero if no object was found.

t Position SearchLastObj (const t Object * po obj) const;

Returns the position of the last object which is equal to * po_obj or zero if no object was found.

t Position SearchNextObj (t Position o_pos, const t Object * po obj) const;
Returns the position of the next object which is equal to * po_obj or zero if no object was found. o _pos
must be a valid position value.

t Position SearchPrevObj (t Position o _pos, const t Object * po_obj) const;

Returns the position of the previous object which is equal to * po_obj or zero if no object was found.
0_pos must be a valid position value.

Access to Found Objects
t Object * GetFirstEqualObj (const t Object * po obj) const;

Returns a pointer to the first object which is equal to * po_obj. There must be at least one equal object.

t Object * GetLastEqualObj (const t Object * po obj) const;

Returns a pointer to the last object which is equal to * po_obj. There must be at least one equal object.

Add Objects Conditionally

t Position AddObjCond (const t _Object * po obj);
Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by Add0Obj) if no equal object was found.

t Position AddObjBeforeFirstCond (const t Object * po obj);
Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by AddObjBeforeFirst) if no equal object was found.

t_Position AddObjAfterLastCond (const t_Object * po_obj);

Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by AddObjAfterLast) if no equal object was found.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Spirick Tuning Reference Manual Page 63

Delete Found Objects
t Position DelFirstEqualObj (const t Object * po obj);

Deletes the first object which is equal to * po_obj. There must be at least one equal object. The method
returns the position of the next object of the deleted object or zero, if the last object was deleted.

t Position DellLastEqualObj (const t Object * po obj);

Deletes the last object which is equal to * po_obj. There must be at least one equal object. The method
returns the position of the next object of the deleted object or zero, if the last object was deleted.

Delete Found Objects Conditionally
t Position DelFirstEqualObjCond (const t Object * po obj);

Deletes the first object which is equal to * po_obj or returns zero if no equal object was found. If an
equal object was found the method returns the position of the next object of the deleted object or zero,
if the last object was deleted.

t Position DellLastEqualObjCond (const t Object * po_obj);

Deletes the last object which is equal to * po_obj or returns zero if no equal object was found. If an equal
object was found the method returns the position of the next object of the deleted object or zero, if the
last object was deleted.

2.5.2 Pointer Containers (tuning/ptrcontainer.h)

A container can manage objects of many different types (e.g. ct _String, int, float). If the object type is
a pointer type, some container methods are very unhandily. The method Get0Obj returns a pointer to a
pointer, AddObj requires a parameter of type pointer to pointer etc.

gct Rndl6Array <ct String *> co_array;

gct Rndl6Array <ct String *>::t Position o _pos;
ct_String * pco_str = new ct_String;

0 _pos = co_array. AddObj (& pco_str);

pco_str = * co_array. GetObj (o_pos);

The class template gct_PtrContainer provides a comfortable interface for pointer containers. It maps
many methods of the basic, extended and comp-container interface and provides some additional
methods. To avoid confusions, method names contain the abbreviation Ptr (e.g. GetPtr instead of
GetObj).

Note that a pointer container can be the owner of the referenced objects or it can manage pointers to
objects which have a different owner. The method DelPtrAndObj deletes a pointer and the referenced
object. The method DelPtr simply deletes the pointer, the referenced object remains unchanged.

Note also the difference between comparing the pointers and comparing the referenced objects. In C++
language pointers can be compared. That's why the pointer container interface provides methods of the

comp-container interface. If the object type additionally provides the comparison function 'operator ==',
the pointer container can be extended by the pointer-comp-container interface (see next section).

C++ compilers generate binary code for each template instance. To reduce the size of the binary code
the Spirick pointer containers are based on containers of object type void *. With this technique, many
pointer container instances can share the same binary code.

The first template parameter t obj is the type of the referenced objects. The second template parameter
t_container must at least contain the extended container interface, e.g. gct _Chn32DList <void *>. It is
extended by the comp-container interface and then used as the base class of the pointer container.

Spirick Tuning Reference Manual Page 64

Base Classes

gct_AnyContainer (see above 'Container Interface’)
gct_ExtContainer (see above 'Extended Container')
gct_CompContainer (see above 'Comp-Container’)

Template Declaration

template <class t _obj, class t_container>
class gct PtrContainer: public gct CompContainer <t container>

{
public:
typedef t_obj t RefObject;
inTine ~gct_PtrContainer ()

inline t_obj
inline t _obj
inline t_obj
inline t _obj
inline t _obj
inline t obj

GetPtr (t_Position o_pos) const;
GetFirstPtr () const;

GetLastPtr () const;

GetNextPtr (t_Position o _pos) const;
GetPrevPtr (t_Position o _pos) const;
GetNthPtr (t_Length u_idx) const;

* ok % % Kk %

inline t_Position AddPtr (const t _obj * po_obj);

inTine t_Position AddPtrBefore (t_Position o pos, const t _obj * po obj);
inline t Position AddPtrAfter (t_Position o pos, const t obj * po_obj);
inline t_Position AddPtrBeforeFirst (const t obj * po obj);

inTine t _Position AddPtrAfterLast (const t obj * po obj);

inline t _Position AddPtrBeforeNth (t_Length u_idx, const t obj * po_obj);
inTine t_Position AddPtrAfterNth (t_Length u_idx, const t _obj * po obj);

inTine t_Position DelPtr (t_Position o _pos);
inline t_Position DelFirstPtr O);

inTine t _Position DellastPtr O):

inTine t_Position DelNextPtr (t_Position o _pos);
inTine t_Position DelPrevPtr (t_Position o _pos);
inTine t_Position DelINthPtr (t_Length u_idx);
inline void DelATTPtr ();

inTine t_Position DelPtrAndObj (t Position o_pos);
inTine t Position DelFirstPtrAndObj ();

inline t_Position DelLastPtrAndObj ():

inTine t_Position DelNextPtrAndObj (t_Position o _pos);
inTine t_Position DelPrevPtrAndObj (t Position o _pos);
inTine t_Position DelNthPtrAndObj (t_Length u_idx);

inline void DelAT1PtrAndObj ();
inline bool ContainsPtr (const t _obj * po_obj) const;
inTine t_Length CountPtrs (const t obj * po_obj) const;

inline t Position SearchFirstPtr (const t obj * po_obj) const;
inTine t _Position SearchLastPtr (const t obj * po_obj) const;
inline t _Position SearchNextPtr (t _Position o_pos, const t obj * po obj) const;
inTine t_Position SearchPrevPtr (t_Position o_pos, const t obj * po_obj) const;

inTine t_Position AddPtrCond (const t obj * po obj);
inTine t _Position AddPtrBeforeFirstCond (const t_obj * po_obj):
inTine t_Position AddPtrAfterLastCond (const t obj * po_obj);

inTine t_Position DelFirstEqualPtr (const t _obj * po_obj);
inTine t_Position DellastEqualPtr (const t obj * po_obj);
inTine t_Position DelFirstEqualPtrCond (const t_obj * po obj):
inTine t_Position DellLastEqualPtrCond (const t _obj * po_obj):

Spirick Tuning Reference Manual Page 65

inline t_Position DelFirstEqualPtrAndObj (const t_obj * po obj);
inline t_Position DellLastEqualPtrAndObj (const t_obj * po obj);
inTine t _Position DelFirstEqualPtrAndObjCond (const t_obj * po_obj):
inline t _Position DellastEqualPtrAndObjCond (const t obj * po_obj);

b

// Example of an implementation

template <class t _obj, class t_container>
inTine t obj * gct_PtrContainer <t obj, t_container>::
GetPtr (t_Position o_pos) const

{
return (t_obj *) * GetObj (o_pos);:

}

template <class t obj, class t _container>
inline gct _PtrContainer <t obj, t_container>::t Position
gct PtrContainer <t obj, t_container>::
DelPtrAndObj (t Position o_pos)

{
delete GetPtr (o_pos);

return FreeObj (o _pos);

}

Data Types
typedef t obj t RefObject;

The nested type t RefObject corresponds to the template parameter t obj. It can be used by derived
classes.

Destructor
~gct_PtrContainer ();

The destructor of a pointer container deletes all pointers by calling the method FreeAll, the referenced
objects remain unchanged.

Access to Referenced Objects
t_obj * GetPtr (t_Position o _pos) const;

Returns a pointer to the object at position 0_pos. o_pos must be a valid position value.

t obj * GetFirstPtr () const;

Returns a pointer to the first object. The container must contain at least one pointer.

t obj * GetLastPtr () const;

Returns a pointer to the last object. The container must contain at least one pointer.

t_obj * GetNextPtr (t_Position o_pos) const;

Returns a pointer to the next object. o pos and Next (o_pos) must be valid position values.

t_obj * GetPrevPtr (t Position o_pos) const;

Returns a pointer to the previous object. o pos and Prev (0 pos) must be valid position values.

t obj * GetNthPtr (t Length u_idx) const;

Returns a pointer to the nth object (0 < u_idx <= GetLen).

Spirick Tuning Reference Manual Page 66

Add Pointers

t_Position AddPtr (const t_obj * po_obj);
Adds a pointer and returns the position of the new pointer. The logical position of the new pointer
depends on the container implementation.

t Position AddPtrBefore (t Position o _pos, const t _obj * po obj);
Adds a pointer before a specific position and returns the position of the new pointer. If 0_pos equals
zero, the new pointer is appended after the last pointer, i.e. it will be the new last pointer.

t Position AddPtrAfter (t Position o_pos, const t obj * po_obj);
Adds a pointer after a specific position and returns the position of the new pointer. If 0_pos equals zero,
the new pointer is inserted before the first pointer, i.e. it will be the new first pointer.

t Position AddPtrBeforeFirst (const t obj * po obj);
Adds a pointer before the first pointer and returns the position of the new pointer. The new pointer will
be the new first pointer.

t Position AddPtrAfterLast (const t_obj * po obj):
Adds a pointer after the last pointer and returns the position of the new pointer. The new pointer will be
the new last pointer.

t Position AddPtrBeforeNth (t Length u_idx, const t obj * po_obj):

Adds a pointer before the nth pointer and returns the position of the new pointer (0 < u_idx <= GetLen).

t Position AddPtrAfterNth (t Length u idx, const t obj * po_obj);

Adds a pointer after the nth pointer and returns the position of the new pointer (0 < u_idx <= GetlLen).

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pointers
t_Position DelPtr (t_Position o_pos):

Deletes the pointer at position 0_pos by calling the method FreeObj, the referenced object remains
unchanged. o _pos must be a valid position value. The method returns Next (o _pos), i.e. the position of the
next pointer or zero, if the last pointer was deleted.

t Position DelFirstPtr ();

Deletes the first pointer by calling the method FreeFirstObj, the referenced object remains unchanged.
The container must contain at least one pointer. The method returns the position of the new first pointer
or zero, if the last pointer was deleted.

t Position DellLastPtr ();

Deletes the last pointer by calling the method FreelLast0Obj, the referenced object remains unchanged. The
container must contain at least one pointer. The method always returns zero, because the last pointer
was deleted.

t_Position DelNextPtr (t_Position o_pos):

Deletes the pointer at position Next (o _pos) by calling the method FreeNextObj, the referenced object
remains unchanged. o pos and Next (o_pos) must be valid position values. The method returns Next (Next

Spirick Tuning Reference Manual Page 67

(o_pos)), i.e. the position of the next pointer of the deleted pointer or zero, if the last pointer was
deleted.

t Position DelPrevPtr (t Position o_pos);

Deletes the pointer at position Prev (o _pos) by calling the method FreePrevObj, the referenced object
remains unchanged. o pos and Prev (0_pos) must be valid position values. The method returns o_pos,
because it is the position of the next pointer of the deleted pointer.

t Position DeINthPtr (t Length u_idx);

Deletes the nth pointer (0 < u_idx <= GetlLen) by calling the method FreeNthObj, the referenced object
remains unchanged. The method returns Next (Nth (u_idx)), i.e. the position of the next pointer of the
deleted pointer or zero, if the last pointer was deleted.

void DelA11Ptr ();

Deletes all pointers by calling the method FreeAll, the referenced objects remain unchanged.

Delete Pointers and Referenced Objects
t Position DelPtrAndObj (t Position o_pos):

This method works like De1Ptr and deletes the referenced object.

t Position DelFirstPtrAndObj ();

This method works like DelFirstPtr and deletes the referenced object.

t Position DellLastPtrAndObj ();

This method works like DellLastPtr and deletes the referenced object.

t_Position DelNextPtrAndObj (t_Position o_pos):

This method works like DeTNextPtr and deletes the referenced object.

t Position DelPrevPtrAndObj (t Position o pos):

This method works like DelPrevPtr and deletes the referenced object.

t Position DelNthPtrAndObj (t Length u_idx);

This method works like DeINthPtr and deletes the referenced object.

void DelA11PtrAndObj ();

This method works like DelA11Ptr and deletes the referenced objects.

Compare Pointers

Note the difference between comparing the pointers and comparing the referenced objects. In C++
language pointers can be compared. That's why the pointer container interface provides methods of the

comp-container interface. If the object type additionally provides the comparison function 'operator ==',
the pointer container can be extended by the pointer-comp-container interface (see next section).

Search for Pointers
bool ContainsPtr (const t obj * po_obj) const;

Returns true, if a contained pointer is equal to po_obj.

t_Length CountPtrs (const t obj * po_obj) const;

Returns the number of pointers which are equal to po_obj.

Spirick Tuning Reference Manual Page 68

t Position SearchFirstPtr (const t obj * po obj) const;

Returns the position of the first pointer which is equal to po_obj or zero if no pointer was found.

t Position SearchLastPtr (const t _obj * po obj) const;

Returns the position of the last pointer which is equal to po obj or zero if no pointer was found.

t Position SearchNextPtr (t Position o_pos, const t obj * po_obj) const;
Returns the position of the next pointer which is equal to po obj or zero if no pointer was found. o _pos
must be a valid position value.

t_Position SearchPrevPtr (t Position o_pos, const t obj * po obj) const;

Returns the position of the previous pointer which is equal to po obj or zero if no pointer was found.
0_pos must be a valid position value.

Add Pointers Conditionally

t Position AddPtrCond (const t_obj * po_obj):
Returns the position of the first pointer which is equal to po_obj or the position of a new pointer (added
by AddPtr) if no equal pointer was found.

t Position AddPtrBeforeFirstCond (const t obj * po obj);
Returns the position of the first pointer which is equal to po obj or the position of a new pointer (added
by AddPtrBeforeFirst) if no equal pointer was found.

t_Position AddPtrAfterLastCond (const t_obj * po_obj):

Returns the position of the first pointer which is equal to po obj or the position of a new pointer (added
by AddPtrAfterLast) if no equal pointer was found.

Delete Found Pointers

t Position DelFirstEqualPtr (const t obj * po_obj);
Deletes the first pointer which is equal to po_obj. There must be at least one equal pointer. The method
returns the position of the next pointer of the deleted pointer or zero, if the last pointer was deleted.

t Position DellLastEqualPtr (const t obj * po obj);

Deletes the last pointer which is equal to po_obj. There must be at least one equal pointer. The method
returns the position of the next pointer of the deleted pointer or zero, if the last pointer was deleted.

Delete Found Pointers Conditionally
t Position DelFirstEqualPtrCond (const t obj * po obj);

Deletes the first pointer which is equal to po obj or returns zero if no equal pointer was found. If an
equal pointer was found the method returns the position of the next pointer of the deleted pointer or
zero, if the last pointer was deleted.

t Position DellLastEqualPtrCond (const t obj * po obj);

Deletes the last pointer which is equal to po obj or returns zero if no equal pointer was found. If an equal
pointer was found the method returns the position of the next pointer of the deleted pointer or zero, if
the last pointer was deleted.

Delete Found Pointers and Referenced Objects
t Position DelFirstEqualPtrAndObj (const t obj * po obj);

This method works like DelFirstEqualPtr and deletes the referenced object.

Spirick Tuning Reference Manual Page 69

t Position DellLastEqualPtrAndObj (const t obj * po_obj);

This method works like DellLastEqualPtr and deletes the referenced object.

Delete Found Pointers and Referenced Objects Conditionally
t Position DelFirstEqualPtrAndObjCond (const t obj * po_obj);

This method works like DelFirstEqualPtrCond and deletes the referenced object.

t Position DellLastEqualPtrAndObjCond (const t obj * po obj);

This method works like DellLastEqualPtrCond and deletes the referenced object.

2.5.3 Pointer Container Operations

Insert, Copy and Delete Objects

The following sample code demonstrates some simple pointer container operations. The class ct_Int is
described in the section 'Sample Programs’.

ct_Int co_int = 1;

ct_Int * pco_int;

gct_AnyPtrContainer <ct_Int> co_ptrContainer;
gct_AnyPtrContainer <ct_Int>::t Position o_pos;

// Add a new object by calling the default constructor
0 _pos = co_ptrContainer. AddPtr (new ct_Int);

// Access the object and initialize it
pco_int = co_ptrContainer. GetPtr (o _pos);
(* pco_int) = 2;

// Copy an existing object into the pointer container
0 _pos = co_ptrContainer. AddPtr (new ct Int (co_int));

// Delete a single pointer and the referenced object
co_ptrContainer. DelPtrAndObj (o_pos);

Iterate Forward

The following sample code demonstrates a forward iteration over a pointer container.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t Position o_pos;

for (o_pos = co_ptrContainer. First ();
0 pos !=0;
0_pos = co_ptrContainer. Next (o_pos))

{
float * pf = co_ptrContainer. GetPtr (o _pos);

/]
}

Iterate Backward

The following sample code demonstrates a backward iteration over a pointer container.

gct_AnyPtrContainer <float> co ptrContainer;
gct_AnyPtrContainer <float>::t _Position o_pos;

Spirick Tuning Reference Manual Page 70

for (o_pos = co _ptrContainer. Last ();
0 _pos !=0;
0_pos = co_ptrContainer. Prev (0_pos))

{
float * pf = co _ptrContainer. GetPtr (o_pos);

/..
}

Iterate and Modify

The following sample code demonstrates how to iterate and modify a pointer container.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t _Position o _pos;

for (o_pos = co_ptrContainer. First ();
0 pos !=0;
0 pos = /* delete entry ? */ 7
co_ptrContainer. DelPtrAndObj (o _pos) :
co_ptrContainer. Next (o _pos))

float * pf = co_ptrContainer. GetPtr (o_pos);
/.

}

Alternatively a while loop can be used.

gct_AnyPtrContainer <float> co ptrContainer;
gct_AnyPtrContainer <float>::t _Position o_pos;

0_pos = co_ptrContainer. First ();

while (o _pos != 0)

{
float * pf = co_ptrContainer. GetPtr (o _pos);

/o
if (/* delete entry ? */)

0_pos = co_ptrContainer. DelPtrAndObj (o _pos);
else

0_pos = co_ptrContainer. Next (o_pos);

}

2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h)

If the object type of a pointer container provides the comparison function 'operator ==', the pointer
container can be extended by the pointer-comp-container interface. This interface is very similar to the
comp-container interface (see above). The methods of a pointer-comp-container are based on the
'‘operator ==' of referenced objects. To avoid confusions, method names contain the abbreviation Ref
(e.g. AddRefCond instead of AddObjCond or AddPtrCond).

The template parameter t_container must at least contain the pointer container interface, e.g.
gct _Std32PtrArray <float>. It is used as the base class of the pointer-comp-container

Base Classes

gct_AnyContainer (see above 'Container Interface')
gct_ExtContainer (see above 'Extended Container’)
gct_CompContainer (see above 'Comp-Container’)
gct_PtrContainer (see above 'Pointer Container')

Spirick Tuning Reference Manual Page 71

Template Declaration

template <class t _container>
class gct PtrCompContainer: public t_container

{
public:
inline bool ContainsRef (const t RefObject * po_obj) const;
t Length CountRefs (const t RefObject * po_obj) const;
t Position SearchFirstRef (const t RefObject * po_obj) const;
t Position SearchLastRef (const t RefObject * po_obj) const;
t Position SearchNextRef (t_Position o _pos, const t RefObject * po obj) const;
t Position SearchPrevRef (t_Position o_pos. const t RefObject * po_obj) const;

inline t RefObject * GetFirstEqualRef (const t RefObject * po_obj) const:
inTine t RefObject * GetlLastEqualRef (const t RefObject * po_obj) const;

inTine t_Position AddRefCond (const t RefObject * po_obj):
inline t_Position AddRefBeforeFirstCond (const t RefObject * po obj);
inTine t_Position AddRefAfterLastCond (const t RefObject * po_obj);

inTine t_Position DelFirstEqualRef (const t RefObject * po_obj);
inline t_Position DellLastEqualRef (const t RefObject * po obj);
inTine t_Position DelFirstEqualRefCond (const t RefObject * po obj);
inline t_Position DellLastEqualRefCond (const t RefObject * po obj);

inline t Position DelFirstEqualRefAndObj (const t RefObject * po obj);
inline t_Position DellLastEqualRefAndObj (const t RefObject * po obj);
inline t_Position DelFirstEqualRefAndObjCond (const t RefObject * po obj);
inline t _Position DellastEqualRefAndObjCond (const t RefObject * po obj);

b

Search for Referenced Objects
bool ContainsRef (const t RefObject * po_obj) const;

Returns true, if a referenced object is equal to * po_obj.

t_Length CountRefs (const t RefObject * po_obj) const;

Returns the number of referenced objects which are equal to * po_obj.

t Position SearchFirstRef (const t RefObject * po_obj) const;
Returns the position of the first referenced object which is equal to * po obj or zero if no object was
found.

t Position SearchLastRef (const t RefObject * po obj) const;
Returns the position of the last referenced object which is equal to * po_obj or zero if no object was
found.

t Position SearchNextRef (t Position o_pos, const t RefObject * po obj) const;
Returns the position of the next referenced object which is equal to * po_obj or zero if no object was
found. o_pos must be a valid position value.

t Position SearchPrevRef (t Position o _pos, const t RefObject * po_obj) const;

Returns the position of the previous referenced object which is equal to * po_obj or zero if no object was
found. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 72

Access to Found Objects

t RefObject * GetFirstEqualRef (const t RefObject * po_obj) const;
Returns a pointer to the first referenced object which is equal to * po_obj. There must be at least one
equal object.

t RefObject * GetLastEqualRef (const t RefObject * po_obj) const;

Returns a pointer to the last referenced object which is equal to * po_obj. There must be at least one
equal object.

Add Pointers Conditionally

t Position AddRefCond (const t RefObject * po obj);
Returns the position of the first referenced object which is equal to * po_obj or the position of a new
pointer (added by AddPtr) if no equal object was found.

t Position AddRefBeforeFirstCond (const t RefObject * po_obj):
Returns the position of the first referenced object which is equal to * po_obj or the position of a new
pointer (added by AddPtrBeforeFirst) if no equal object was found.

t Position AddRefAfterLastCond (const t RefObject * po obj);

Returns the position of the first referenced object which is equal to * po obj or the position of a new
pointer (added by AddPtrAfterLast) if no equal object was found.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pointers of Found Objects
t Position DelFirstEqualRef (const t RefObject * po_obj);

Deletes the pointer of the first referenced object which is equal to * po_obj. There must be at least one
equal object. The method returns the position of the next pointer of the deleted pointer or zero, if the
last pointer was deleted.

t Position DellLastEqualRef (const t RefObject * po_obj);

Deletes the pointer of the last referenced object which is equal to * po_obj. There must be at least one
equal object. The method returns the position of the next pointer of the deleted pointer or zero, if the
last pointer was deleted.

Delete Pointers of Found Objects Conditionally
t Position DelFirstEqualRefCond (const t RefObject * po_obj):

Deletes the pointer of the first referenced object which is equal to * po_obj or returns zero if no equal
object was found. If an equal object was found the method returns the position of the next pointer of
the deleted pointer or zero, if the last pointer was deleted.

t Position DellLastEqualRefCond (const t RefObject * po_obj);

Deletes the pointer of the last referenced object which is equal to * po_obj or returns zero if no equal
object was found. If an equal object was found the method returns the position of the next pointer of
the deleted pointer or zero, if the last pointer was deleted.

Spirick Tuning Reference Manual Page 73

Delete Pointers and Objects of Found Objects
t Position DelFirstEqualRefAndObj (const t RefObject * po_obj):

This method works like DelFirstEqualRef and deletes the referenced object.

t Position DellLastEqualRefAndObj (const t RefObject * po_obj);

This method works like DellLastEqualRef and deletes the referenced object.

Delete Pointers and Objects of Found Objects Conditionally
t Position DelFirstEqualRefAndObjCond (const t RefObject * po _obj);

This method works like DelFirstEqualRefCond and deletes the referenced object.

t Position DellLastEqualRefAndObjCond (const t RefObject * po obj);

This method works like DellLastEqualRefCond and deletes the referenced object.

2.5.5 Map Containers (tuning/map.h)

The map container interface is an extension of the basic container interface. A map container manages
key-value pairs. The 'value' type requirements are very simple. A class type must contain a default and
a copy constructor, no other requirements have to be fulfilled. Numeric and pointer types can also be
used. The 'key' type must additionally provide the comparison function 'operator ==". So it's possible to
search for a specific key.

A map container is based on a basic container which manages key-value pairs, e.g. gct_Std32Array

<gct MapEntry <ct _String, ct_Int>>. The basic container is used as the base class of the map container.
Key-value type example: The type gct MapEntry <ct String, ct_Int> is based on the 'key' type ct String
and the 'value' type ct_Int. The 'key' type is used as the base class of the key-value type. Numeric data
types, e.g. int or char, must be extended by the template gct Key, e.g. gct MapEntry <gct Key <int>,
ct_String>. If the base container of a map container is a sorted array, the 'key' type must provide the
comparison function 'operator <'. If the base container is a hash table, the 'key' type must provide the
method GetHash.

Base Classes

gct_AnyContainer (see above 'Container Interface’)
[gct _ExtContainer (optional, see above 'Extended Container')]

Template Declaration

template <class t _container>
class gct Map: public t_container

{
public:
typedef t Object::t Key t_Key:
typedef t Object::t Value t Value;
inline bool ContainsKey (t Key o_key) const;
t_Length CountKeys (t_Key o _key) const;
t Position SearchFirstKey (t Key o _key) const;
t_Position SearchlLastKey (t_Key o key) const;
t Position SearchNextKey (t Position o _pos, t Key o key) const;
t Position SearchPrevKey (t _Position o_pos, t Key o key) const;
inTine t Key GetKey (t_Position o _pos) const;
inTine t Value * GetValue (t_Position o _pos) const;

Spirick Tuning Reference Manual Page 74

inline t Value * GetFirstValue (t Key o key) const;
inline t Value * GetLastValue (t_Key o key) const;

t Position AddKeyAndValue (t_Key o key, const t Value * po_value = 0);
t Position AddKeyAndValueCond (t _Key o key, const t Value * po_value = 0);

inTine t_Position DelKeyAndValue (t_Position o_pos);
inTine t _Position DelFirstKeyAndValue (t Key o key);
inTine t_Position DellLastKeyAndValue (t Key o key);
inTine t_Position DelFirstKeyAndValueCond (t _Key o _key);
inline t_Position DellastKeyAndValueCond (t_Key o _key);
inline void DelAT1KeyAndValue ();

b

Data Types
typedef t Object::t Key t Key;
The nested type t Key describes the 'key' type of key-value pairs.

typedef t Object::t Value t Value;

The nested type t Value describes the 'value' type of key-value pairs.

Search for Pairs
bool ContainsKey (t Key o key) const;

Returns true, if a contained key is equal to o key.

t_Length CountKeys (t Key o key) const;

Returns the number of keys which are equal to o _key.

t Position SearchFirstKey (t Key o key) const;

Returns the position of the first key-value pair whose key is equal to o _key or zero if no key was found.

t_Position SearchLastKey (t _Key o _key) const:

Returns the position of the last key-value pair whose key is equal to o _key or zero if no key was found.

t_Position SearchNextKey (t Position o_pos, t Key o key) const;
Returns the position of the next key-value pair whose key is equal to o _key or zero if no key was found.
0_pos must be a valid position value.

t Position SearchPrevKey (t Position o pos. t Key o key) const;:

Returns the position of the previous key-value pair whose key is equal to o_key or zero if no key was
found. o _pos must be a valid position value.

Access to Key and Value
t Key GetKey (t Position o _pos) const;

Returns the key of the key-value pair at position 0_pos. o_pos must be a valid position value.

t Value * GetValue (t_Position o_pos) const;

Returns a pointer to the value of the key-value pair at position 0_pos. o_pos must be a valid position
value.

Spirick Tuning Reference Manual Page 75

Access to Found Values

t Value * GetFirstValue (t Key o key) const;
Returns a pointer to the value of the first key-value pair whose key is equal to o_key. There must be at
least one equal key.

t Value * GetLastValue (t Key o key) const;

Returns a pointer to the value of the last key-value pair whose key is equal to 0_key. There must be at
least one equal key.

Add Key-Value Pairs (Conditionally)
t Position AddKeyAndValue (t _Key o key, const t Value * po_value = 0):

Adds a key-value pair and returns the position of the new pair. The logical position of the new pair
depends on the container implementation. If po_value equals zero, the new value is created by the
default constructor, otherwise the copy constructor is used.

t _Position AddKeyAndValueCond (t _Key o_key., const t Value * po_value = 0);

Returns the position of the first key-value pair whose key is equal to 0 _key or the position of a new pair
if no equal key was found. The logical position of the new pair depends on the container
implementation. If po value equals zero, the new value is created by the default constructor, otherwise
the copy constructor is used.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pairs
t Position DelKeyAndValue (t Position o _pos);

Deletes the key-value pair at position o_pos. Calls the destructor of the key-value pair and releases the
corresponding memory. o0_pos must be a valid position value. The method returns Next (o_pos), i.e. the
position of the next pair or zero, if the last pair was deleted.

void DelAl1KeyAndValue ();

Deletes all contained key-value pairs. Calls the destructor of the pairs and releases the corresponding
memory.

Delete Found Pairs
t Position DelFirstKeyAndValue (t Key o key):
Deletes the first key-value pair whose key is equal to o _key. There must be at least one equal key. The
method returns the position of the next pair of the deleted pair or zero, if the last pair was deleted.
t_Position DellLastKeyAndValue (t Key o key);

Deletes the last key-value pair whose key is equal to o key. There must be at least one equal key. The
method returns the position of the next pair of the deleted pair or zero, if the last pair was deleted.

Spirick Tuning Reference Manual Page 76

Delete Found Pairs Conditionally
t Position DelFirstKeyAndValueCond (t Key o key);

Deletes the first key-value pair whose key is equal to o_key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted.

t Position DellLastKeyAndValueCond (t Key o key);

Deletes the last key-value pair whose key is equal to o key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted.

2.5.6 Pointer Map Containers (tuning/ptrmap.h)

A map container can manage 'value' objects of many different types (e.g. ct_String, int, float). If the
'value' type is a pointer type, some map container methods are very unhandily. The method GetValue
returns a pointer to a pointer, AddKkeyAndValue requires a parameter of type pointer to pointer etc.

The class template gct PtrMap provides a comfortable interface for pointer map containers. A pointer map
manages key-pointer pairs. The pointers refer to 'value' objects. The 'key' type requirements are very
simple. A class type must contain a default and a copy constructor. Numeric and pointer types can also
be used. The 'key' type must additionally provide the comparison function 'operator =='. So it’s possible
to search for a specific key.

Note that a pointer map container can be the owner of the referenced value objects or it can manage
pointers to value objects which have a different owner. The method DelKeyAndValue deletes a key-pointer
pair and the referenced value object. The method DelKey simply deletes the key-pointer pair, the
referenced value object remains unchanged.

The first template parameter t _container must be a container type which manages key-pointer pairs, e.g.
gct _Std32Array <gct PtrMapEntry <ct String> >. The second template parameter t_value is the type of the
value objects. The basic container is used as the base class of the pointer map container.

Key-pointer type example: The type gct PtrMapEntry <ct String> is based on the 'key' type ct _String. The
pointer part of the key-pointer pair is of type void *. With this technique, many pointer map container
instances can share the same binary code. The 'key' type is used as the base class of the key-pointer
type. Numeric data types, e.g. int or char, must be extended by the template gct Key, e.g.

gct _PtrMapEntry <gct Key <int> >. If the base container of a pointer map container is a sorted array, the
'key' type must provide the comparison function 'operator <'. If the base container is a hash table, the
'key' type must provide the method GetHash.

Base Classes

gct_AnyContainer (see above 'Container Interface’)
[gct_ExtContainer (optional, see above 'Extended Container’)]

Template Declaration

template <class t_container, class t_value>
class gct PtrMap: public t _container

{

public:
typedef t Object::t Key t Key;
typedef t value t Value;
inTine bool ContainsKey (t Key o key) const;
t _Length CountKeys (t_Key o _key) const;

Spirick Tuning Reference Manual Page 77

t Position SearchFirstKey (t Key o key) const;

t Position SearchLastKey (t Key o key) const;

t_Position SearchNextKey (t Position o_pos,
t_Key o_key) const;:

t Position SearchPrevKey (t Position o_pos,

t Key o _key) const;:

inTine t Key GetKey (t_Position o_pos) const;

inTine t Value * GetValPtr (t_Position o _pos) const;
inTine t Value * GetFirstValPtr (t_Key o _key) const;
inTine t Value * GetLastValPtr (t_Key o key) const;

t Position AddKeyAndValPtr (t Key o key,
const t Value * po_value);
t _Position AddKeyAndValPtrCond (t _Key o _key,

const t Value * po_value);

inline t _Position DelKey (t_Position o pos);
inline t_Position DelFirstKey (t Key o key);
inline t Position DellLastKey (t Key o key);
inline t_Position DelFirstKeyCond (t Key o _key);
inline t_Position DellLastKeyCond (t _Key o key);
inline void DelA11Key ():

inline t _Position DelKeyAndValue (t Position o_pos);
inTine t _Position DelFirstKeyAndValue (t Key o key);
inline t _Position DellastKeyAndValue (t Key o key);
inTine t_Position DelFirstKeyAndValueCond (t_Key o _key);
inline t Position DellastKeyAndValueCond (t Key o key):
void DelAT1KeyAndValue ();

b

Data Types
typedef t Object::t Key t Key;
The nested type t Key describes the 'key' type of key-pointer pairs.

typedef t value t Value;

The nested type t Value describes the type of referenced objects of key-pointer pairs.

Search for Pairs
pbool ContainsKey (t Key o key) const;

Returns true, if a contained key is equal to o key.

t_Length CountKeys (t Key o key) const;

Returns the number of keys which are equal to o key.

t Position SearchFirstKey (t Key o key) const;

Returns the position of the first key-pointer pair whose key is equal to o key or zero if no key was found.

t_Position SearchLastKey (t _Key o _key) const:

Returns the position of the last key-pointer pair whose key is equal to o key or zero if no key was found.

t Position SearchNextKey (t Position o pos, t Key o key) const;

Returns the position of the next key-pointer pair whose key is equal to o_key or zero if no key was
found. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 78

t Position SearchPrevKey (t Position o _pos, t Key o key) const;

Returns the position of the previous key-pointer pair whose key is equal to o_key or zero if no key was
found. o_pos must be a valid position value.

Access to Key and Value
t Key GetKey (t Position o _pos) const;

Returns the key of the key-pointer pair at position 0 _pos. o_pos must be a valid position value.

t_Value * GetValPtr (t_Position o_pos) const;

Returns a pointer to the referenced value object of the key-pointer pair at position 0_pos. o_pos must be a
valid position value.

Access to Found Values

t Value * GetFirstValPtr (t Key o key) const;
Returns a pointer to the referenced value object of the first key-pointer pair whose key is equal to o _key.
There must be at least one equal key.

t Value * GetLastValPtr (t Key o key) const:

Returns a pointer to the referenced value object of the last key-pointer pair whose key is equal to o _key.
There must be at least one equal key.

Add Key-Pointer Pairs (Conditionally)

t Position AddKeyAndValPtr (t Key o key, const t Value * po_value);
Adds a key-pointer pair and returns the position of the new pair. The logical position of the new pair
depends on the container implementation.

t_Position AddKeyAndValPtrCond (t Key o_key, const t_Value * po_value):

Returns the position of the first key-pointer pair whose key is equal to o key or the position of a new pair
if no equal key was found. The logical position of the new pair depends on the container
implementation.

Return Value of Delete Methods

Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pairs
t Position DelKey (t_Position o _pos);

Deletes the key-pointer pair at position o _pos. Calls the destructor of the key-pointer pair and releases
the corresponding memory. The referenced value object remains unchanged. o pos must be a valid
position value. The method returns Next (o _pos), i.e. the position of the next pair or zero, if the last pair
was deleted.

void DelAl1Key ();

Deletes all contained key-pointer pairs. Calls the destructor of the pairs and releases the corresponding
memory. The referenced value objects remain unchanged.

Spirick Tuning Reference Manual Page 79

Delete Found Pairs

t Position DelFirstKey (t Key o key);
Deletes the first key-pointer pair whose key is equal to o _key. The referenced value object remains
unchanged. There must be at least one equal key. The method returns the position of the next pair of
the deleted pair or zero, if the last pair was deleted.

t Position DellLastKey (t Key o key);

Deletes the last key-pointer pair whose key is equal to o _key. The referenced value object remains
unchanged. There must be at least one equal key. The method returns the position of the next pair of
the deleted pair or zero, if the last pair was deleted.

Delete Found Pairs Conditionally

t Position DelFirstKeyCond (t Key o key);
Deletes the first key-pointer pair whose key is equal to 0 _key or returns zero if no equal key was found.
If an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted. The referenced value object remains unchanged.

t Position DellLastKeyCond (t Key o key);

Deletes the last key-pointer pair whose key is equal to o _key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted. The referenced value object remains unchanged.

Delete Pairs and Referenced Objects
t Position DelKeyAndValue (t Position o_pos);:

This method works like DelKey and deletes the referenced value object.

void DelA11KeyAndValue ();

This method works like De1A11Key and deletes the referenced value objects.

Delete Found Pairs and Referenced Objects
t Position DelFirstKeyAndValue (t Key o key):

This method works like DelFirstKey and deletes the referenced value object.

t Position DellLastKeyAndValue (t Key o key);

This method works like DellLastKey and deletes the referenced value object.

Delete Found Pairs and Referenced Objects Conditionally
t Position DelFirstKeyAndValueCond (t Key o key);

This method works like DelFirstKeyCond and deletes the referenced value object.

t Position DellLastKeyAndValueCond (t Key o key);

This method works like DellLastKeyCond and deletes the referenced value object.

Spirick Tuning Reference Manual Page 80

2.6 Pointer Container Instances

2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h)

Some template instances are predefined to easily use pointer array containers. The macro
PTR_ARRAY DCLS(0bj) generates for each wrapper class of a global store one pointer array template.

The macro
PTR_ARRAY DCLS (Any)
expands to:

template <class t _obj> class gct_Any PtrArray:

public gct PtrContainer <t obj, gct Any Array <void *> > { };
template <class t _obj> class gct Any8PtrArray:

public gct PtrContainer <t obj, gct Any8Array <void *> > { };
template <class t obj> class gct AnyléPtrArray:

public gct PtrContainer <t obj, gct Anyl6Array <void *> > { };
template <class t obj> class gct Any32PtrArray:

public gct PtrContainer <t obj, gct Any32Array <void *> > { };

Every directory of a global store contains a file 'ptrarray.h'.
The file "tuning/std/ptrarray.h’ contains the following declarations:

template <class t _obj> class gct Std PtrArray;
template <class t obj> class gct Std8PtrArray;
template <class t _obj> class gct _Stdl6PtrArray;
template <class t _obj> class gct Std32PtrArray;

The file "tuning/rnd/ptrarray.h’ contains the following declarations:

template <class t obj> class gct Rnd PtrArray;
template <class t obj> class gct Rnd8PtrArray:;
template <class t _obj> class gct Rnd16PtrArray;
template <class t _obj> class gct Rnd32PtrArray;
The file "tuning/chn/ptrarray.h’ contains the following declarations:
template <class t obj> class gct Chn PtrArray;
template <class t _obj> class gct Chn8PtrArray;

template <class t obj> class gct ChnléPtrArray;
template <class t obj> class gct Chn32PtrArray;

2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)

Some template instances are predefined to easily use pointer list containers. The macro
PTR DLIST DCLS(Obj) generates for each wrapper class of a global store one pointer list template.

The macro
PTR_DLIST DCLS (Any)
expands to:

template <class t obj> class gct_Any PtrDList:
public gct PtrContainer <t obj, gct Any DList <void *> > { };

Spirick Tuning Reference Manual Page 81

template <class t obj> class gct Any8PtrDList:

public gct PtrContainer <t obj, gct Any8DList <void *> > { };
template <class t obj> class gct Anyl6PtrDList:

public gct PtrContainer <t obj, gct AnyleDList <void *> > { };
template <class t _obj> class gct Any32PtrDList:

public gct PtrContainer <t obj, gct Any32DList <void *> > { };

Every directory of a global store contains a file 'ptrdlist.h’.
The file "tuning/std/ptrdlist.h' contains the following declarations:

template <class t obj> class gct Std PtrDList;
template <class t obj> class gct Std8PtrDList;
template <class t obj> class gct StdlePtrDList;
template <class t obj> class gct Std32PtrDList;

The file "tuning/rnd/ptrdlist.h’ contains the following declarations:

template <class t _obj> class gct Rnd PtrDList;
template <class t obj> class gct Rnd8PtrDList;
template <class t obj> class gct Rnd16PtrDList;
template <class t _obj> class gct Rnd32PtrDList;

The file "tuning/chn/ptrdlist.h’ contains the following declarations:

template <class t obj> class gct Chn PtrDList;
template <class t obj> class gct Chn8PtrDList;
template <class t obj> class gct Chnl6PtrDList;
template <class t obj> class gct Chn32PtrDList;

2.6.3 Pointer Sorted Array Instances
(tuning/xxx/ptrsortedarray.h)

Some template instances are predefined to easily use pointer sorted array containers. The macro
PTR_SORTEDARRAY DCLS(0bj) generates for each wrapper class of a global store one pointer sorted array
template.

The macro
PTR_SORTEDARRAY DCLS (Any)
expands to:

template <class t _obj> class gct Any PtrSortedArray:

public gct PtrContainer <t obj, gct Any SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct Any8PtrSortedArray:

public gct PtrContainer <t obj, gct Any8SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct AnyléPtrSortedArray:

public gct PtrContainer <t obj, gct Anylé6SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct Any32PtrSortedArray:

public gct PtrContainer <t obj, gct Any32SortedArray <gct SortedArrayRef <t obj> > > { };

Every directory of a global store contains a file 'ptrsortedarray.h'.
The file "tuning/std/ptrsortedarray.h’ contains the following declarations:

template <class t obj> class gct Std PtrSortedArray;
template <class t obj> class gct Std8PtrSortedArray;
template <class t obj> class gct Stdl6PtrSortedArray;
template <class t obj> class gct Std32PtrSortedArray;

Spirick Tuning Reference Manual Page 82

The file "tuning/rnd/ptrsortedarray.h’ contains the following declarations:

template <class t obj> class gct Rnd _PtrSortedArray;
template <class t _obj> class gct Rnd8PtrSortedArray;
template <class t obj> class gct Rndl6PtrSortedArray;
template <class t _obj> class gct Rnd32PtrSortedArray;

The file "tuning/chn/ptrsortedarray.h’ contains the following declarations:

template <class t _obj> class gct Chn PtrSortedArray;
template <class t _obj> class gct Chn8PtrSortedArray;
template <class t _obj> class gct Chnl6PtrSortedArray;
template <class t _obj> class gct Chn32PtrSortedArray;

2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h)

Some template instances are predefined to easily use pointer hash table containers. The macro
PTR_HASHTABLE DCLS(Obj) generates for each wrapper class of a global store one pointer hash table
template.

The macro
PTR_HASHTABLE_DCLS (Any)
expands to:

template <class t obj> class gct Any PtrHashTable:

public gct PtrContainer <t obj, gct Any HashTable <gct HashTableRef <t obj> > > { };
template <class t obj> class gct Any8PtrHashTable:

public gct PtrContainer <t obj, gct Any8HashTable <gct HashTableRef <t obj> > > { };
template <class t obj> class gct AnyléPtrHashTable:

public gct PtrContainer <t obj, gct Anyl6HashTable <gct HashTableRef <t obj> > > { };
template <class t _obj> class gct Any32PtrHashTable:

public gct PtrContainer <t obj, gct Any32HashTable <gct HashTableRef <t obj> > > { };

Every directory of a global store contains a file 'ptrhashtable.h’.
The file "tuning/std/ptrhashtable.h’ contains the following declarations:

template <class t obj> class gct Std PtrHashTable;
template <class t _obj> class gct Std8PtrHashTable;
template <class t _obj> class gct Stdl6PtrHashTable;
template <class t _obj> class gct Std32PtrHashTable;

The file "tuning/rnd/ptrhashtable.h’ contains the following declarations:

template <class t_obj> class gct Rnd _PtrHashTable;
template <class t_obj> class gct Rnd8PtrHashTable;
template <class t_obj> class gct Rndl6PtrHashTable;
template <class t_obj> class gct Rnd32PtrHashTable;

The file "tuning/chn/ptrhashtable.h’ contains the following declarations:

template <class t _obj> class gct Chn PtrHashTable;
template <class t obj> class gct Chn8PtrHashTable;
template <class t_obj> class gct Chnl6PtrHashTable;
template <class t obj> class gct Chn32PtrHashTable;

Spirick Tuning Reference Manual Page 83

2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)

Some template instances are predefined to easily use block pointer list containers. The macro
BLOCKPTR_DLIST DCLS(0Obj) generates for each wrapper class of a global store one block pointer list
template.

The macro
BLOCKPTR_DLIST DCLS (Any)
expands to:

template <class t_obj> class gct_Any BlockPtrDList:

public gct PtrContainer <t obj. gct Any BlockDList <void *> > { };
template <class t_obj> class gct Any8BlockPtrDList:

public gct PtrContainer <t obj, gct Any8BlockDList <void *> > { };
template <class t _obj> class gct Anyl6BlockPtrDList:

public gct PtrContainer <t obj, gct Anyl6BlockDList <void *> > { };
template <class t _obj> class gct Any32BlockPtrDList:

public gct PtrContainer <t obj, gct Any32BlockDList <void *> > { };

Every directory of a global store contains a file "blockptrdlist.h’.
The file "tuning/std/blockptrdlist.h’ contains the following declarations:

template <class t_obj> class gct Std BlockPtrDList;
template <class t _obj> class gct Std8BlockPtrDList;
template <class t obj> class gct Std16BlockPtrDList;
template <class t obj> class gct Std32BlockPtrDList;

The file "tuning/rnd/blockptrdlist.h’ contains the following declarations:

template <class t obj> class gct Rnd BlockPtrDList;
template <class t _obj> class gct Rnd8BTockPtrDList;
template <class t obj> class gct Rnd16BlockPtrDList;
template <class t _obj> class gct Rnd32BlockPtrDList;

The file "tuning/chn/blockptrdlist.h’ contains the following declarations:
template <class t_obj> class gct Chn BlockPtrDList;
template <class t obj> class gct Chn8BlockPtrDList;

template <class t obj> class gct Chnl6BlockPtrDList;
template <class t obj> class gct Chn32BlockPtrDList;

2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h)

Some template instances are predefined to easily use ref pointer list containers. The macro
REFPTR_DLIST DCLS(Obj) generates for each wrapper class of a global store one ref pointer list template.

The macro
REFPTR_DLIST DCLS (Any)
expands to:
template <class t _obj> class gct_Any RefPtrDList:
public gct PtrContainer <t obj, gct Any RefDList <void *> > { };
template <class t _obj> class gct Any8RefPtrDList:

public gct PtrContainer <t obj, gct Any8RefDList <void *> > { };
template <class t _obj> class gct Anyl6RefPtrDList:

Spirick Tuning Reference Manual Page 84

public gct PtrContainer <t obj, gct Anyl6RefDList <void *> > { };
template <class t obj> class gct Any32RefPtrDList:
public gct PtrContainer <t obj, gct Any32RefDList <void *> > { };

Every directory of a global store contains a file 'refptrdlist.h’.
The file "tuning/std/refptrdlist.h’ contains the following declarations:

template <class t _obj> class gct Std RefPtrDList;
template <class t obj> class gct Std8RefPtrDList;
template <class t obj> class gct Stdl6RefPtrDList;
template <class t obj> class gct Std32RefPtrDList;

The file "tuning/rnd/refptrdlist.h’ contains the following declarations:

template <class t_obj> class gct Rnd RefPtrDList;
template <class t_obj> class gct Rnd8RefPtrDList;
template <class t_obj> class gct Rnd16RefPtrDList;
template <class t _obj> class gct Rnd32RefPtrDList;

The file "tuning/chn/refptrdlist.h’ contains the following declarations:

template <class t obj> class gct Chn RefPtrDList;
template <class t _obj> class gct Chn8RefPtrDList;
template <class t obj> class gct Chnl6RefPtrDList;
template <class t_obj> class gct Chn32RefPtrDList;

2.6.7 Block-Ref Pointer List Instances
(tuning/xxx/blockrefptrdlist.h)

Some template instances are predefined to easily use block-ref pointer list containers. The macro
BLOCKREFPTR DLIST DCLS(0bj) generates for each wrapper class of a global store one block-ref pointer list
template.

The macro
BLOCKREFPTR_DLIST DCLS (Any)
expands to:

template <class t obj> class gct Any BlockRefPtrDList: public
gct _PtrContainer <t obj, gct Any BlockRefDList <void *> > { };
template <class t obj> class gct Any8BlockRefPtrDList: public
gct_PtrContainer <t _obj, gct Any8BlockRefDList <void *> > { };
template <class t _obj> class gct Anyl6BlockRefPtrDList: public
gct_PtrContainer <t _obj, gct Anyl6BlockRefDList <void *> > { };
template <class t _obj> class gct Any32BlockRefPtrDList: public
gct _PtrContainer <t _obj, gct Any32BlockRefDList <void *> > { };

Every directory of a global store contains a file 'blockrefptrdlist.h’.
The file "tuning/std/blockrefptrdlist.h’ contains the following declarations:

template <class t obj> class gct Std BlockRefPtrDList;
template <class t _obj> class gct Std8BlockRefPtrDList;
template <class t obj> class gct Stdl6BlockRefPtrDList;
template <class t _obj> class gct Std32BlockRefPtrDList;

The file "tuning/rnd/blockrefptrdlist.h’ contains the following declarations:

Spirick Tuning Reference Manual Page 85

template <class t obj> class gct Rnd BlockRefPtrDList;
template <class t obj> class gct Rnd8BlockRefPtrDList;
template <class t _obj> class gct Rnd16BlockRefPtrDList;
template <class t _obj> class gct Rnd32BTockRefPtrDList;

The file "tuning/chn/blockrefptrdlist.h’' contains the following declarations:
template <class t _obj> class gct Chn BlockRefPtrDList;
template <class t _obj> class gct Chn8BlockRefPtrDList;

template <class t obj> class gct Chnl6BlockRefPtrDList;
template <class t _obj> class gct Chn32BTlockRefPtrDList;

2.7 Overview of Container Instances

2.7.1 Predefined Template Instances

This section describes the naming convention of predefined template instances. A predefined template
name consists of 7 parts.

1. Prefix

A predefined container name begins with the prefix gct .

2. Global Store

Predefined containers allocate memory from one of the global store objects: Std, Rnd or Chn.

3. Length Type

The nested type t _Length describes the number of contained objects, examples are t UInt, t UInt8,
t UIntle and t_UInt32. The corresponding abbreviations are , 8, 16 and 32.

4. Optional Block

If a block store is used to implement a list container, the name will contain the abbreviation Block.

5. Optional Ref

If a ref-store is used to implement a list container, the name will contain the abbreviation Ref.

6. Optional Ptr

If the container is a pointer container, the name will contain the abbreviation Ptr.

7. Container Type

A predefined container name ends with the abbreviation for the container type: Array, DList, SortedArray
or HashTable.

The following table summarizes the naming convention.

Spirick Tuning Reference Manual Page 86

Prefix Glob. Store | t_Length Opt. Block | Opt. Ref | Opt. Ptr | Cont. Type
gct_ Std B Block Ref Ptr Array
Rnd 8 - - - DList
Chn 16 SortedArray
32 HashTable

2.7.2 User Defined Container Templates

In addition to the predefined containers, various other container templates can be defined. Predefined
containers are based on the block template gct Block. The alternative block implementations

gct _FixBlock, gct MiniBlock and gct ResBlock can also be used. It is recommended to use the same naming
convention as the predefined containers. The following sample code demonstrates how to use the block

template gct_MiniBlock to implement some container templates.

typedef gct EmptyBaseMiniBlock <ct Chn Store> ct Chn MiniBlock;
typedef gct EmptyBaseMiniBlock <ct Chn32Store> ct _Chn32MiniBlock;
typedef gct BlockStore <ct PageBlock, gct CharBlock <ct Chn MiniBlock, char> > ct Chn_PageBlockStore;

template <class t obj>
class gct_Chn MiniArray: public gct ExtContainer
<gct FixItemArray <t obj, ct Chn MiniBlock> > { };

template <class t_obj>
class gct _Chn MiniSortedArray: public gct_ExtContainer
<gct_FixItemSortedArray <t obj, ct Chn MiniBlock> > { };

template <class t_obj>
class gct _Chn MiniPtrArray:
public gct _PtrContainer <t _obj, gct Chn MiniArray <void *> > { };

template <class t_obj>
class gct _Chn32MiniHashTabTe:
pubTic gct ExtContainer <gct HashTable <t obj, ct Chn32MiniBlock> > { };

template <class t_obj>
class gct_Chn32MiniPtrHashTable:
pubTlic gct PtrContainer <t obj, gct Chn32MiniHashTable
<gct_HashTableRef <t obj> > > { };

2.8 Collections

2.8.1 Abstract Object (tuning/object.hpp)

Containers and collections are two different concepts to manage sets of C++ objects. A container
manages a uniform set of objects. It also contains the objects itself, i.e. the underlying memory. A
collection can manage a polymorphic set of objects which are derived from a common base class. All
objects to be used by the Spirick collection classes must inherit from the abstract base class ct_Object.

Class Declaration
class ct_Object

Spirick Tuning Reference Manual Page 87

{

public:
virtual ~ct_Object ()
virtual bool operator < (const ct Object & co_comp) const;
virtual t_UInt GetHash () const;
b
Methods

~ct_Object ();

The virtual destructor ensures type-safe destruction of derived classes.

bool operator < (const ct _Object & co_comp) const;:

The comparison function 'operator <'is used by the collection class ct_SortedArray.

t UInt GetHash () const;

The method GetHash is used by hash table containers.

2.8.2 Abstract Collection (tuning/collection.hpp)

The collection interface is identical to the pointer container interface (see above 'Pointer Containers').
The following differences exist between pointer containers and collections:

- Pointer containers are templates, collections are classes.

- Pointer containers can manage pointers of arbitrary type, collections manage pointers to ct Object.

All collections are derived from the abstract base class ct_Collection, all methods are virtual. A specific
collection class is implemented by using the methods of a specific pointer container.

Base Class

ct Object (see above 'Abstract Object’)

Class Declaration

class ct _Collection: public ct _Object

{
public:
typedef t UInt t Length;
typedef t UInt t_Position;
virtual bool Iskmpty () const = 0;

virtual t_Length GetLen () const = 0:

virtual t_Position First () const = 0;
virtual t_Position Last () const = 0;
virtual t_Position Next (t_Position o _pos) const =
virtual t Position Prev (t_Position o _pos) const
virtual t_Position Nth (t_Length u_idx) const = 0;

Il |
o O

virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct _Object

GetPtr (t_Position o _pos) const = 0;
GetFirstPtr () const = 0:

GetLastPtr () const = 0;

GetNextPtr (t_Position o _pos) const = 0;
GetPrevPtr (t_Position o _pos) const = 0;
GetNthPtr (t_Length u_idx) const = 0;

X % 3k ok X X

virtual t_Position AddPtr (const ct_Object * po_obj) = 0;
virtual t Position AddPtrBefore (t Position o pos, const ct Object * po obj) = 0;
virtual t Position AddPtrAfter (t Position o pos, const ct Object * po obj) = 0;

Spirick Tuning Reference Manual Page 88

virtual t Position AddPtrBeforeFirst (const ct Object * po obj) = 0;

virtual t_Position AddPtrAfterLast (const ct Object * po obj) = 0;

virtual t Position AddPtrBeforeNth (t Length u idx, const ct Object * po_obj) = 0;
virtual t Position AddPtrAfterNth (t Length u idx, const ct _Object * po obj) = 0;

virtual t Position DelPtr (t Position o pos) = 0;
virtual t_Position DelFirstPtr () = 0;

virtual t_Position DellastPtr () = 0:

virtual t_Position DelNextPtr (t_Position o _pos) =
virtual t_Position DelPrevPtr (t_Position o_pos) = 0;
virtual t_Position DeINthPtr (t_Length u_idx) = 0;
virtual void DeTATTPtr () = 0;

o

virtual t_Position DelPtrAndObj (t Position o _pos) = 0;
virtual t_Position DelFirstPtrAndObj () = 0;

virtual t_Position DellastPtrAndObj () = 0;

virtual t_Position DelNextPtrAndObj (t Position o _pos) = 0;

virtual t_Position DelPrevPtrAndObj (t _Position o _pos) = 0;

virtual t Position DelNthPtrAndObj (t Length u idx) = 0;

virtual void DeTAT1PtrAndObj () = 0;

virtual bool ContainsPtr (const ct Object * po obj) const = 0;
virtual t_Length CountPtrs (const ct Object * po obj) const = 0;

virtual t _Position SearchFirstPtr (const ct Object * po obj) const = 0;
virtual t Position SearchLastPtr (const ct_Object * po obj) const = 0;
virtual t Position SearchNextPtr (t Position o_pos, const ct Object * po obj) const
virtual t_Position SearchPrevPtr (t Position o _pos, const ct Object * po_obj) const

o
o O

virtual t_Position AddPtrCond (const ct Object * po obj) = 0;
virtual t_Position AddPtrBeforeFirstCond (const ct Object * po_obj) = 0;
virtual t Position AddPtrAfterLastCond (const ct Object * po obj) =

o

virtual t_Position DelFirstEqualPtr (const ct_Object * po_obj) = 0:
virtual t_Position DellastEqualPtr (const ct Object * po_obj) = 0;
virtual t_Position DelFirstEqualPtrCond (const ct_Object * po_obj) = 0;
virtual t_Position DellastEqualPtrCond (const ct Object * po_obj) = 0:

virtual t_Position DelFirstEqualPtrAndObj (const ct Object * po_obj) = 0:
virtual t_Position DellLastEqualPtrAndObj (const ct Object * po_obj) = 0;
virtual t_Position DelFirstEqualPtrAndObjCond (const ct Object * po_obj) = 0;
virtual t_Position DellastEqualPtrAndObjCond (const ct Object * po_obj) = 0:

b

2.8.3 Collection Operations

Insert, Copy and Delete Objects

The following sample code demonstrates some simple collection operations. The class ct_Int is
described in the section 'Sample Programs’.

ct_Int co_int = 1;

ct_Int * pco_int;

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o _pos;

// Add a new object by calling the default constructor
0 pos = co_collection. AddPtr (new ct_Int);

// Access the object and initialize it
pco_int = dynamic_cast <ct_Int *> (co_collection. GetPtr (o_pos)):
(* pco_int) = 2;

Spirick Tuning Reference Manual Page 89

// Copy an existing object into the collection
0 pos = co_collection. AddPtr (new ct_Int (co int));

// Delete a single pointer and the referenced object
co_collection. DelPtrAndObj (o_pos);

Iterate Forward

The following sample code demonstrates a forward iteration over a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

for (o_pos = co_collection. First ():
0 pos !=0;
0 pos = co_collection. Next (o pos))
{
ct Object * pco object = co_collection. GetPtr (o _pos);
/.

}

Iterate Backward

The following sample code demonstrates a backward iteration over a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o _pos;

for (o_pos = co_collection. Last ();
0 _pos !'=0;
0_pos = co_collection. Prev (o_pos))
{
ct_Object * pco_object = co_collection. GetPtr (o _pos);
/.

}

Iterate and Modify

The following sample code demonstrates how to iterate and modify a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

for (o _pos = co_collection. First ();
0 pos !=0;
0 pos = /* delete entry ? */ 7
co_collection. DelPtrAndObj (o_pos) :
co_collection. Next (o_pos))
{
ct _Object * pco object = co_collection. GetPtr (o _pos);
/.

}

Alternatively a while loop can be used.

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o _pos;

0_pos = co_collection. First ():
while (o_pos != 0)

{

ct _Object * pco_object = co_collection. GetPtr (o_pos);

Spirick Tuning Reference Manual Page 90

/o
if (/* delete entry ? */)

0 _pos = co_collection. DelPtrAndObj (o _pos);
else

0_pos = co_collection. Next (o_pos);

}

2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp)

The ref-collection interface is identical to the ref-list interface (see above 'Ref-Lists’, template
gct _RefDList). A specific ref-collection class is implemented by using the methods of a specific ref
pointer list, e.g. gct_Chn RefPtrDList <ct_Object>.

Base Classes

ct Object (see above 'Abstract Object')
ct Collection (see above 'Abstract Collection')

Class Declaration

class ct _RefCollection: public ct Collection

{
public:

virtual void IncRef (t_Position o pos) = 0;
virtual void DecRef (t_Position o _pos) = 0;
virtual t RefCount GetRef (t Position o _pos) const = 0;
virtual bool IsAlloc (t_Position o _pos) const = 0;
virtual bool IsFree (t _Position o pos) const = 0;
b

2.8.5 Predefined Collections

Some collection classes are predefined to easily use the collection and ref-collection interfaces. The
macro COLLMAP_DCL declares a collection class. The macro COLLMAP DEF generates the implementation of the
class methods using a pointer container ('tuning/collmap.hpp’). The macros REFCOLLMAP DCL and
REFCOLLMAP DEF are used to declare and implement ref-collections ('tuning/refcollmap.hpp’). The header
file of a collection class does not include any container header file.

Implementation Compile Runtime

Container templates, slower faster
inline methods

Collection virtual methods faster slower

The macro

COLLMAP DCL (Array)

is located in a header file and expands to:
class ct_Array: public ct _Collection

{
/o

b

Spirick Tuning Reference Manual Page 91

The macro COLLMAP DEF is located in a cpp file. Predefined collection and ref-collection classes are based
on pointer containers of type gct Chn_....

#include "tuning/chn/ptrarray.h"
COLLMAP_DEF (Array. gct_Chn_PtrArray)

The file "tuning/array.hpp' contains the following declaration:

class ct Array: public ct Collection { /*...*/ };

The file "tuning/dlist.hpp’ contains the following declaration:

class ct DList: public ct Collection { /*...*/ };

The file 'tuning/sortedarray.hpp’ contains the following declaration:

class ct_SortedArray: public ct Collection { /*...*/ };

The file "tuning/blockdlist.hpp’ contains the following declaration:

class ct BlockDList: public ct_Collection { /*...*/ };

The file "tuning/refdlist.hpp’ contains the following declaration:

class ct RefDList: public ct RefCollection { /*...*/ };

The file "tuning/blockrefdlist.hpp' contains the following declaration:

class ct BlockRefDList: public ct RefCollection { /*...*/ };

Spirick Tuning Reference Manual Page 92

3 STRINGS AND UTILITIES

3.1 System Interface

3.1.1 Resource Errors (tuning/sys/creserror.hpp)

This enum defines different resource errors.

Enumeration

enum et ResError
{
ec_ResOK = 0,
ec_ResUnknownError,
ec_ResUninitialized,
ec_ResAlreadyInitialized,
ec_ResInvalidKey,
ec_ResInvalidValue,
ec_ResNoKey,
ec_ResAlreadyExists,
ec_ResAccessDenied,
ec_ResNotFound,
ec_ResLockCountMismatch,
ec_ReslLockFailed,
ec_ResUnlockFailed,
ec_ResMemMapFailed,
ec_ResUnmapFailed,
ec_ResQuerySizeFailed

}:

ec_ResOK

No errors occured.

ec_ResUnknownError

Unknown error.

ec_ResUninitialized

Attempt to use an uninitialized object.

ec_ResAlreadylInitialized

Attempt to reinitialize an initialized object.

ec_ResInvalidKey

Invalid key.

ec_ResInvalidValue

Invalid function parameter.

ec_ResNoKey

Attempt to use an object without a key.

Spirick Tuning Reference Manual Page 93

ec_ResAlreadyExists

Object with a specific key already exists.

ec_ResAccessDenied

Access denied.

ec_ResNotFound

Object with a specific key not found.

ec_ReslLockCountMismatch

Mutex lock/unlock mismatch.

ec_ReslLockFailed

Mutex lock failed.

ec_ResUnTockFailed

Mutex unlock failed.

ec_ResMemMapFailed

Shared memory mapping failed.

ec_ResUnmapFailed

Shared memory unmapping failed.

ec_ResQuerySizeFailed

Query shared memory size failed.

3.1.2 Character and String Conversion (tuning/sys/cstring.hpp)

This section describes several character and string conversion functions. Each 8-bit character function
has a matching wide character version. Length parameters refer to the number of characters, not to the
size in bytes.

The character case conversion functions are implemented in two different ways. The first
implementation (t1 ToUpper/t1 TolLower) is very fast. It uses the Windows-1252 character set (this is a
superset of ISO 8859-1 (Latin-1)). These functions use a static conversion table independent of the
current locale. This implementation is not compatible with UTF strings.

The second implementation (t1_ToUpper2/t1 TolLower?2) uses fast, wide character based system calls (MS
Windows: CharUpperW, Linux: towupper). The matching 8-bit character versions use a temporary wide
character string. This implementation is partially compatible with UTF strings (see also next section).

Multibyte strings (char) are partially compatible with UTF-8. Wide character strings (wchar_t) are partially
compatible with UTF-16 (MS Windows: 16 bit, Linux: 16 or 32 bit). See next section for full UTF
compatible functions. The conversion between multibyte and wide character strings consists of two
steps: calculate the size of the target buffer and perform the conversion. The conversion functions rely
on corresponding system functions (e.g. MS Windows: MultiByteToWideChar, Linux: mbstowcs).

Functions

char t1_ToUpper (char c);
wchar_t t1 _ToUpper (wchar_t c);

Converts a single character to upper case (Windows-1252).

Spirick Tuning Reference Manual Page 94

char t1_ToLower (char c);
wchar_t t1_ToLower (wchar_t c);

Converts a single character to lower case (Windows-1252).
bool t1 _ToUpper (char * pc_str);
bool t1_ToUpper (wchar t * pc_str);
Converts a null-terminated string to upper case (Windows-1252).
bool t1 _ToLower (char * pc_str);
bool t1_ToLower (wchar_t * pc_str);

Converts a null-terminated string to lower case (Windows-1252).

wchar_t t1 _ToUpper2 (wchar_ t c);

Converts a single character to upper case (partially UTF compatible).

wchar t t1 ToLower2 (wchar t c);

Converts a single character to lower case (partially UTF compatible).
bool t1_ToUpper2 (char * pc_str);
bool t1_ToUpper2 (wchar_t * pc_str);

Converts a null-terminated string to upper case (partially UTF compatible).
bool t1 TolLower2 (char * pc str);
pbool t1_ToLower2 (wchar t * pc_str);

Converts a null-terminated string to lower case (partially UTF compatible).
t UInt t1_StringLength (const char * pc);
t UInt t1_StringLength (const wchar_t * pc);

Calculates the length of a string up to, but not including the terminating null character.
unsigned t1_StringHash (const char * pc, t UInt u_Tlength);
unsigned t1_StringHash (const wchar t * pc, t UInt u_length);

Calculates the string’s hash value.

t UInt t1_MbConvertCount (wchar_t *, const char * pc_src);
Counts the number of wide characters inclusive the terminating null character to convert a null-
terminated multibyte string. The type of the first parameter is used to resolve overloaded functions, the
parameter value is not used.

bool t1_MbConvert (wchar t * pc_dst, const char * pc_src, t UInt u_count):
Converts a null-terminated multibyte string to a null-terminated wide character string. u_count is the wide
character size of the destination buffer.

t UInt t1_MbConvertCount (char *, const wchar t * pc_src);

Counts the number of 8-bit characters inclusive the terminating null character to convert a null-
terminated wide character string. The type of the first parameter is used to resolve overloaded
functions, the parameter value is not used.

bool t1_MbConvert (char * pc_dst, const wchar_t * pc_src, t UInt u_count);

Converts a null-terminated wide character string to a null-terminated multibyte string. u_count is the 8-bit
character size of the destination buffer.

Spirick Tuning Reference Manual Page 95

Appropriate Classes

The classes ct_String and ct_WString rely on the global functions of this section.

3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)

The implementation of multibyte and wide character functions (previous section) relies on corresponding
system functions (e.g. MS Windows: MultiByteToWideChar, Linux: mbstowcs). These functions are partially
compatible with UTF strings, and the runtime behavior is OS and locale dependent.

The conversion functions of this section don’t use any external resources. The algorithms are fully
compatible with the UTF encodings, and the runtime behavior is OS and locale independent. They work
on null-terminated and non-null-terminated strings. In case of an UTF format error, a precise error code
and the precise error position are returned.

Enumeration

enum et _UtfError
{
ec UtfOK = 0,
ec_UtfMissingNull, // Missing null character
ec_UtfNulllnside, // Null character inside of string
ec_UtfMoMissingStart, // Multibyte (10xx xxxx) without startbyte (1Ixx xxxx)
ec_UtfMbInvalidStart, // Invalid startbyte (1111 1xxx)

ec_UtfMbExpected, // Multibyte (10xx xxxx) expected
ec_UtfMbEnd, // String end in multibyte sequence
ec_UtfWideRange, // Wide character out of range
ec_UtfSurrogate, // UTF-16 surrogate in wide character

ec_UtfHighSurrkxpected, // High surrogate expected
ec_UtfLowSurrExpected, // Low surrogate expected

ec_UtfSurrknd, // String end in surrogate
ec_UtfDestTooSmall, // Destination buffer size too small
ec_UtfDestToolLarge, // Destination buffer size too large
ec_ULfTEOS, // End of string

ec_UtflLastError

b

An UTF-8 character is of type t UInt8, an UTF-16 character is of type t UIntl6, and an UTF-32 character
is of type t UInt32. Length parameters refer to the number of characters, not to the size in bytes.

The following UTF conversions are implemented: UTF-8 <-> UTF-32, UTF-16 <-> UTF-32 and UTF-8 <->
UTF-16. A string conversion consists of two steps: calculate the size of the target buffer and perform
the conversion. If the parameter b null equals true, the conversion includes the terminating null
character.

The length functions count the number of UTF characters (inclusive the terminating null character, if the
parameter b _null equals true). The upper/lower functions convert UTF strings to upper/lower case. The
conversion is done for UTF characters of the Basic Multilingual Plane (< 0x10000) which don’t change the
size.

If the source pointer pu_src is of type 'reference to pointer', the parameter is used to store the error
position in case of an UTF error. If the parameter b null equals true, the string must be terminated by a
null character, and inside of the string null characters are not allowed.

Spirick Tuning Reference Manual Page 96

Functions

et UtfError t1_UtfConvertCount (t UIntY * t UInt & u_dstlen, const t UIntX * & pu_src, t UInt u_srcLen, bool
D null = true);

Counts the number of Ulnt-Y characters to convert the UTF-X string (pu_src, u_srcLen) to UTF-Y, and
stores the result in u_dstlLen. The type of the first parameter is used to resolve overloaded functions, the
parameter value is not used.

et UtfError t1_UtfConvert (t UIntY * pu dst, t UInt u dstlLen, const t UIntX * pu_ src, t UInt u_srcLen, bool
b null = true);

Converts the UTF-X string (pu_src, u_srclLen) to the destination buffer (pu_dst, u_dstlLen) of type UTF-Y.

et UtfError t1 _UtflLength (t _UInt & u_len, const t UIntX * & pu_src, t UInt u_srclen, bool b null = true);

Counts the number of UTF characters of the UTF-X string (pu_src, u_srcLen) and store the result in u_Ten.

et UtfError t1_UtfToUpper (t UIntX * & pu_src, t UInt u_srclLen);

Converts the UTF-X string (pu_src, u_srclLen) to upper case.

et UtfError t1_UtfToLower (t UIntX * & pu_src, t UInt u_srcLen);

Converts the UTF-X string (pu_src, u_srcLen) to lower case.

3.1.4 Unicode Const Iterator (tuning/utfcit.h)

The UTF const iterator is a utility to iterate over constant UTF-8, UTF-16 and UTF-32 strings without
converting the data into a temporary UTF-32 buffer. The iterator converts the current (possibly
multiword) UTF character to UTF-32 and provides some position and length information. An UTF-8
character is of type t UInt8, an UTF-16 character is of type t UIntl6, and an UTF-32 character is of type
t UInt32. Length parameters refer to the number of characters, not to the size in bytes. The UTF string
may contain null characters. Modifying the string while iterating it is not allowed.

Template Declaration

template <class t _char>
class gct UtfCit

{
public:
typedef t_char t _Char:
inline gct_UtfCit O;
inTine gct UtfCit (const t Char * pu_src, t_UInt u_ srclLen);
void First (const t Char * pu_src, t UInt u_srclLen):
bool Ready () const;
void Next ()
t UInt32 GetChar () const;
t UInt GetCharPos () const;
t Ulnt GetRawPos () const;
t UInt GetRawLen () const;
et UtfError GetError () const;
1%
Methods

gct UtfCit (O);

Initializes an empty iterator.

Spirick Tuning Reference Manual Page 97

gct UtfCit (const t UIntX * pu_src, t UInt u_srcLen);

Initializes the iterator and reads the first UTF character from the UTF-X string (pu_src, u_srclLen).

void First (const t UIntX * pu_src, t UInt u_srclLen);

Reads the first UTF character from the UTF-X string (pu_src, u_srclLen).

bool Ready () const;

Returns true if an UTF character was read successfully.

void Next ();

Reads the next UTF character from the source string.

t UInt32 GetChar () const;
Returns the current UTF character in UTF-32 format.

t UInt GetCharPos () const;

Returns the sequential number of the current UTF character.

t_UInt GetRawPos () const;

Returns the position of the current UTF character in t_UIntX format.

t_Uint GetRawLen () const;

Returns the length of the current UTF character in t UIntX format.

et UtfError GetError () const;

Returns the error code of the current UTF character.
ec_UtfOK: UTF character was read successfully.
ec_UtfEOS: End of string.

Other error: UTF format error. Iteration aborted.

Sample Code

The following sample code demonstrates a forward iteration over an UTF-X string.
gct UtfCit <t _UIntX> co_cit;

for (co_cit. First (pu_src. u_srclLen);
co_cit. Ready ();
co_cit. Next ())

{
t UInt32 u_char = co_cit. GetChar ()

/.
}

if (co_cit. GetError () != ec ULfEOS)
{

// error handling

}

3.1.6 Precision Time (tuning/sys/ctimedate.hpp)

The system time (next section) is inaccurate in the microsecond range. The following function provides
a more precise measurement.

Spirick Tuning Reference Manual Page 98

Data Types
typedef t _Int64 t MicroTime;

Data type for precision time values.

Functions
t MicroTime t1_QueryPrecisionTime ();

Returns the time in microseconds since the first call of the function.

3.1.6 Time and Date (tuning/sys/ctimedate.hpp)

The following functions can be used for calendar and time calculations. Time values are expressed in
microseconds since 1/1/1970. The current time can be queried in UTC and local time.

Data Types, Constants
typedef t _Int64 t MicroTime;

Time values are expressed in microseconds since 1/1/1970.

const t MicroTime co MicroSecondFactor 111;

const t MicroTime co MilliSecondFactor = 100017
const t MicroTime co SecondFactor = 100000077 ;
const t MicroTime co MinuteFactor = 6000000017 ;
const t MicroTime co HourFactor = 360000000017;
const t MicroTime co DayFactor = 8640000000017

These constants are conversion factors from microseconds to milliseconds, seconds, minutes, hours and
days.

Functions
t MicroTime t1_QueryUTCTime ();

Returns the current time, as reported by the system clock, in UTC.

t MicroTime t1 _QueryLocalTime ();

Returns the current time, as reported by the system clock, in the local time zone.

t MicroTime t1_UTCToLocalTime (t MicroTime i_time);

Converts UTC to local time.

t MicroTime t1_LocalToUTCTime (t MicroTime i_time);

Converts local time to UTC.
Appropriate Class

The class ct_TimeDate relies on the global functions of this section.

3.1.7 CPU Time (tuning/sys/ctimedate.hpp)

The following functions retrieve timing information for a process or thread.

Spirick Tuning Reference Manual Page 99

Structure Declaration

struct st_UserKernelTime

{

t MicroTime 0_UserTime;

t MicroTime 0_KernelTime;
b

This struct contains two microsecond values.
0 UserTime: Amount of time that the process/thread has executed in user mode.
0 KernelTime: Amount of time that the process/thread has executed in kernel mode.

Functions
bool t1_QueryProcessTimes (st _UserKernelTime * pso_times):

Retrieves timing information for the current process.

pbool t1_QueryThreadTimes (st UserKernelTime * pso_times);

Retrieves timing information for the current thread.

3.1.8 Thread Utilities (tuning/sys/cprocess.hpp)

The following functions can be used for multithreading.

Functions
t Int32 t1_InterlockedRead (volatile t_Int32 * pi value);

Returns a 32-bit value, loaded as an atomic operation.

t Int32 t1_InterlockedWrite (volatile t Int32 * pi value, t Int32 i _new);

Writes a 32-bit value as an atomic operation.

t Int32 t1_InterlockedAdd (volatile t Int32 * pi_value, t_Int32 i_add);

Performs an atomic addition operation on a 32-bit value and returns the result.

t_Int32 t1_InterlockedIncrement (volatile t_Int32 * pi_value);
t_Int32 t1_InterlockedDecrement (volatile t_Int32 * pi_value);

Increments/decrements a 32-bit value as an atomic operation and returns the result.

void t1 Delay (int i milliSec);

Suspends the current thread for the specified number of milliseconds.

void t1 RelinquishTimeSTlice ();

The current thread relinquishes the remainder of its time slice to any other thread.

ct String t1_GetEnv (const char * pc_name);

Returns the value of the environment variable specified by the null-terminated string pc_name.

ct _String t1 _GetTempPath ();

Returns the path for temporary files.

Spirick Tuning Reference Manual Page 100

3.1.9 Threads (tuning/sys/cthread.hpp)

The following functions can be used to create and terminate threads.

Data Types
typedef void (* ft _ThreadFunc) (void *);

Pointer to the thread function.

Functions

bool t1 BeginThread (ft ThreadFunc fo_func, void * pv_param, t UInt u_stackSize = 8u * 1024u);
Creates and starts a new thread and returns true on success. The parameter fo_func points to the thread
function. The parameter pv_param is passed to this function. Optionally the stack size of the new thread
can be specified. The thread is terminated by returning from the thread function or by calling
t1 EndThread.

void t1 _EndThread ();
Terminates the current thread. The MS Windows implementation does not call destructors of local
objects.

t UInté4 t1 Threadld ();

Returns an OS dependent thread id.

3.1.10 Processes (tuning/sys/cprocess.hpp)

The following functions can be used to create and terminate processes.

Functions
int t1_Exec (const char * pc_path, unsigned u_params, const char * * ppc params, bool b wait = false);

Creates and starts a new process. The parameter pc_path specifies the path to the executable file.
Optionally u_params string parameters can be passed to the new process. The parameter ppc_params must
point to an array containing u_params pointers. A string parameter pointer must be equal to the null
pointer or it must point to a null-terminated string. Null pointers are replaced by pointers to an empty
string. A string parameter may contain whitespace, and it may begin and end with '"".

On error the function returns -1. If the parameter b wait equals false, the function returns an OS
dependent id of the new process. Otherwise the function waits for termination of the new process and
returns its exit code. See also the sample programs 'texec' and 'texechelper'.

void t1_EndProcess (unsigned u_exitCode);
Terminates the current process without calling destructors. The parameter u_exitCode is passed to the
operating system.

int t1_ProcessId ();

Returns an OS dependent process id.

pbool t1_IsProcessRunning (int i processld);

Returns true if the process specified by i _processld was started successfully and is still running.

Spirick Tuning Reference Manual Page 101

3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp)

A thread mutex is an object to synchronize multiple threads of a process.

Class Declaration

class ct_ThMutex

{

pubTlic:
booT GetInitSuccess () const;
et ResError TryLock (bool & b success):
et_ResError Lock ()
et ResError UnTock ():

b

The class ct_ThMutex can be used to protect access to a shared resource (mutual exclusion). If a thread
locks a mutex, the same thread must unlock the mutex. The implementation is recursive, i.e. a thread
may lock an already locked mutex. Mutex objects must not be copied by a copy constructor, an
assignment operator, memcpy or memmove.

Methods

bool GetInitSuccess ();

Returns true if the mutex object was initialized successfully.

et _ResError TryLock (bool & b_success);
Tries to lock the mutex and stores true or false in b_success. The method returns immediately without
blocking the thread.

et ResError Lock ();
Locks the mutex and returns immediately on success. If another thread has locked the mutex the
current thread will be blocked until the mutex is unlocked.

et ResError Unlock ();

Unlocks the mutex.

Functions

The following functions use a predefined global mutex object.

bool t1 CriticalSectionInitSuccess ();

Returns true if the global mutex object was initialized successfully.

void t1 DeleteCriticalSection ();

Deletes the global mutex object. This function may be called optionally at the end of the program.

et ResError t1 _TryEnterCriticalSection (bool & b success):
Tries to lock the global mutex object and stores true or false in b_success. The method returns
immediately without blocking the thread.

et ResError t1 _EnterCriticalSection ();

Locks the global mutex object and returns immediately on success. If another thread has locked the
mutex the current thread will be blocked until the mutex is unlocked.

Spirick Tuning Reference Manual Page 102

et ResError t1_LeaveCriticalSection ();

Unlocks the global mutex object.

3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)

A thread semaphore is an object to synchronize multiple threads of a process.

Class Declaration

class ct_ThSemaphore

{
pubTlic:

ct_ThSemaphore (t_Int32 i _initValue = 1);
~ct_ThSemaphore ():

booT GetInitSuccess () const;

et ResError TryAcquire (bool & b success, t UInt32 u milliSec = 0);

et ResError Acquire ()

et _Reskrror Release ();

b

The class ct_ThSemaphore implements a counting semaphore. A semaphore can be acquired and released
by multiple threads in arbitrary order. The method Acquire decrements the internal counter, Release
increments the counter. If the counter becomes zero, the current thread will be blocked until another
thread releases the semaphore.

If the counter initially equals 1, a counting semaphore can be used like a mutex. In this case the method
Acquire works like Lock, and Release works like Unlock. If the counter initially equals zero, a counting
semaphore can be used to implement a message queue (see sample program 'tsemaphore’). Semaphore
objects must not be copied by a copy constructor, an assignment operator, memcpy or memmove.

Methods
ct _ThSemaphore (t Int32 i_initValue = 1);

Initializes the object and sets the internal counter to i_initValue.

bool GetInitSuccess ();

Returns true if the semaphore object was initialized successfully.

et ResError TryAcquire (bool & b_success, t UInt32 u milliSec = 0);
Tries to acquire the semaphore and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

et ReskError Acquire ();
Acquires the semaphore (i.e. decrement the counter) and returns immediately on success. If the counter
becomes zero, the current thread will be blocked until another thread releases the semaphore.

et Reskrror Release ();

Releases the semaphore (i.e. increments the counter).

Spirick Tuning Reference Manual Page 103

3.1.13 Shared Resource (tuning/sys/csharedres.hpp)

The class ct_SharedResource is the base class for objects which can be shared by multiple processes. A
shared resource is identified by a key (an 8-bit character string).

Before using a shared resource, a key must be assigned and the object must be initialized by calling Open
or Create of a derived class. Once a shared resource has been initialized, the key must not be changed.

Class Declaration

class ct_SharedResource

{
public:

ct_SharedResource ();
ct_SharedResource (const char * pc_key);
ct_SharedResource (const char * pc_key, unsigned u_idx);

virtual ~ct_SharedResource ();

bool GetInitSuccess () const;

const char * GetKey () const;

et ResError SetKey (const char * pc_key);

et ResError SetKey (const char * pc_key, unsigned u_idx);

b

Methods

ct_SharedResource ();

Constructs a shared resource without a key.

ct_SharedResource (const char * pc_key);

Constructs a shared resource identified by pc_key.

ct SharedResource (const char * pc_key, unsigned u_idx);

Constructs a shared resource identified by pc_key and u_idx. The value of u_idx is converted to a string
and appended to pc_key.

virtual ~ct_SharedResource ();

The virtual destructor ensures type-safe destruction of derived classes.

bool GetInitSuccess ();

Returns true if the shared resource was initialized successfully.

const char * GetKey () const;

Returns the key.

et_ResError SetKey (const char * pc_key):

Sets the key to pc_key.

et ReskError SetKey (const char * pc_key, unsigned u_idx);

Sets the key to pc_key. The value of u_idx is converted to a string and appended to pc_key.

3.1.14 Process Mutex (tuning/sys/cprmutex.hpp)

A process mutex is an object to synchronize multiple processes.

Spirick Tuning Reference Manual Page 104

Base Class

ct_SharedResource (see above 'Shared Resource')

Class Declaration

class ct_PrMutex: public ct_SharedResource

{
pubTlic:
ct_PrMutex ()
ct_PrMutex (const char * pc_key);
ct_PrMutex (const char * pc_key, unsigned u_idx);
~ct_PrMutex ();
et _ResError Open O);
et _ResError Create (bool b createNew = false);
et _Reskrror Close ();
et ResError TryLock (bool & b_success, t UInt32 u milliSec = 0);
et _ResError Lock ():
et ResError Unlock ();
s

The class ct_PrMutex can be used to protect access to a shared resource (mutual exclusion). A process
mutex is fully initialized if the key has been set and Open or Create has returned ec ResOK. If a process
locks a mutex, the same process must unlock the mutex. The MS Windows implementation is recursive,
i.e. a process may lock an already locked mutex. The Linux implementation is not recursive. The
methods TrylLock, Lock and Unlock are thread-safe. Mutex objects must not be copied by a copy
constructor or an assignment operator.

Methods
ct PrMutex ();

Constructs a process mutex using a predefined key.

ct PrMutex (const char * pc_key);

Constructs a process mutex identified by pc_key.

ct PrMutex (const char * pc_key, unsigned u_idx);
Constructs a process mutex identified by pc_key and u_idx. The value of u_idx is converted to a string
and appended to pc_key.

~ct PrMutex ();

The destructor closes the mutex.

et ResError Open ();

Opens an existing process mutex.

et_ResError Create (bool b_createNew = false);
Creates a new process mutex. Returns ec_ResAlreadyExists if b_createNew equals true and a process mutex
with the same key already exists.

et Reskrror Close ();

Closes an open process mutex.

et ResError TryLock (bool & b_success, t UInt32 u_milliSec = 0);

Tries to lock the process mutex and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

Spirick Tuning Reference Manual Page 105

et ResError Lock ();

Locks the process mutex and returns immediately on success. If another process has locked the mutex
the current thread will be blocked until the mutex is unlocked.

et ResError Unlock ();

Unlocks the process mutex.

Functions

The following functions use a predefined global mutex object.

bool t1_CriticalPrSectionInitSuccess ():

Returns true if the global mutex object was initialized successfully.

void t1 DeleteCriticalPrSection ();

Deletes the global mutex object. This function may be called optionally at the end of the program.

et_ResError t1_TryEnterCriticalPrSection (bool & b_success, t_UInt32 u_milliSec = 0);

Tries to lock the global mutex object and stores true or false in b_success. The method will wait for at
most u_milliSec milliseconds.

et ResError t1 EnterCriticalPrSection ();

Locks the global mutex object and returns immediately on success. If another process has locked the
mutex the current thread will be blocked until the mutex is unlocked.

et ReskError t1 LeaveCriticalPrSection ();

Unlocks the global mutex object.

3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)

A process semaphore is an object to synchronize multiple processes.

Base Class

ct_SharedResource (see above 'Shared Resource')

Class Declaration

class ct_PrSemaphore: public ct_SharedResource

{

public:
ct_PrSemaphore ();
ct_PrSemaphore (const char * pc_key);
ct_PrSemaphore (const char * pc_key, unsigned u_idx);
~ct_PrSemaphore ();
et Reskrror Open O);
et ResError Create (t_Int32 i_initValue = 1, bool b createNew = false);
et _Reskrror Close ();
et ResError TryAcquire (bool & b success, t UInt32 u milliSec = 0);
et ResError Acquire ();
et ResError Release ()
IE

Spirick Tuning Reference Manual Page 106

The class ct_PrSemaphore implements a counting semaphore. A process semaphore is fully initialized if the
key has been set and Open or Create has returned ec_ResOK. A semaphore can be acquired and released by
multiple processes in arbitrary order. The method Acquire decrements the internal counter, Release
increments the counter. If the counter becomes zero, the current thread will be blocked until another
process releases the semaphore.

If the counter initially equals 1, a counting semaphore can be used like a mutex. In this case the method
Acquire works like Lock, and Release works like Unlock. If the counter initially equals zero, a counting
semaphore can be used to implement a message queue (see sample program 'tsemaphore'). The
methods TryAcquire, Acquire and Release are thread-safe. Semaphore objects must not be copied by a
copy constructor or an assignment operator.

Methods

ct_PrSemaphore ();

Constructs a process semaphore using a predefined key.

ct_PrSemaphore (const char * pc_key):

Constructs a process semaphore identified by pc_key.

ct_PrSemaphore (const char * pc_key, unsigned u_idx);
Constructs a process semaphore identified by pc_key and u_idx. The value of u_idx is converted to a
string and appended to pc_key.

~ct_PrSemaphore ();

The destructor closes the semaphore.

et _ResError Open ();

Opens an existing process semaphore.

et ResError Create (t Int32 i initValue = 1, bool b_createNew = false);
Creates a new process semaphore and sets the internal counter to i_initValue. Returns
ec_ResAlreadyExists if b_createNew equals true and a process semaphore with the same key already exists.
et Reskrror Close ();

Closes an open process semaphore.

et ResError TryAcquire (bool & b_success, t UInt32 u milliSec = 0);
Tries to acquire the semaphore and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

et ReskError Acquire ();
Acquires the semaphore (i.e. decrement the counter) and returns immediately on success. If the counter
becomes zero, the current thread will be blocked until another process releases the semaphore.

et Reskrror Release ();

Releases the semaphore (i.e. increments the counter).

3.1.16 Shared Memory (tuning/sys/csharedmem.hpp)

The class ct_SharedMemory provides access to a shared memory block by multiple processes. A shared
memory object is fully initialized if the key has been set and Open or Create has returned ec_ResOK.

Spirick Tuning Reference Manual Page 107

Base Class

ct_SharedResource (see above 'Shared Resource')

Class Declaration

class ct_SharedMemory: public ct_SharedResource

{
public:

ct_SharedMemory ();
ct_SharedMemory (const char * pc_key);
ct_SharedMemory (const char * pc_key, unsigned u_idx);
~ct_SharedMemory ();

et ResError Open (bool b_readOnly);

et ResError Create (t_UInt u_size, bool b_createNew = false):

et ResError Close O):

t UInt GetSize () const;

void * GetData () const;

i

Methods

ct_SharedMemory ();

Constructs a shared memory object using a predefined key.

ct_SharedMemory (const char * pc_key):

Constructs a shared memory object identified by pc_key.

ct_SharedMemory (const char * pc_key, unsigned u_idx);
Constructs a shared memory object identified by pc_key and u_idx. The value of u_idx is converted to a
string and appended to pc_key.

~ct_SharedMemory ();

The destructor closes the shared memory object.

et _ResError Open (bool b readOnly);

Opens an existing shared memory object. The parameter b readOnly determines the access mode.

et ResError Create (t UInt u_size, bool b createNew = false);

Creates a new shared memory block of u_size bytes. Returns ec_ResAlreadyExists if b_createNew equals
true and a shared memory object with the same key already exists.

et Reskrror Close ();

Closes an open shared memory object.

t UInt GetSize () const;

Returns the size of the shared memory block.

void * GetData () const;

Returns a pointer to the contents of the shared memory block.

Spirick Tuning Reference Manual Page 108

3.1.17 File /O (tuning/sys/cfile.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The following functions are based on operating system related functions. In most cases, the OS API
functions perform better than the compiler’s runtime system (fopen etc.). The functions t1 _OpenFile and
t1 CreateFile are protected against race conditions. All functions return true on success and false on
failure, no exceptions are thrown.

Data Types, Constants

typedef ... t Fileld;
const t Fileld co InvalidFileld = ...;
typedef t _Int64 t FileSize;

A file id is an OS dependent identification number that references an open file. The constant
co_InvalidFileld is invalid by definition. t FileSize is used for size and position values.

Functions
bool t1 OpenFile (const char * pc name, t Fileld & o _file, bool b readOnly = true, bool b_sequential = true);

Opens the existing file pc_name. The parameter b_readOnly determines the access mode. The parameter
b _sequential is a hint to optimize file caching (sequential or random access). Set o file to
co_Invalidrileld before calling the function. Returns true on success and stores the file id in o_file.

bool t1 CreateFile (const char * pc_name, t Fileld & o_file, bool b createNew = false);

Creates the new file pc_name and opens it for read/write access. Returns false if b_createNew equals true

and the specified file already exists. Otherwise the function overwrites the existing file. Set o_file to

co_InvalidFileld before calling the function. Returns true on success and stores the file id in o _file.
bool t1 CloseFile (t Fileld o file);

Closes the file 0 file.

bool t1_ExistsFile (const char * pc_name);

Returns true if the file pc_name exists.

bool t1_MoveFile (const char * pc_old, const char * pc_new);

Moves (renames) a file either in the same directory or across directories.

bool t1_CopyFile (const char * pc_old, const char * pc_new, bool b overwrite = true);
Copies an existing file to a new file. Returns false if b _overwrite equals false and the specified file
already exists.

bool t1 _DeleteFile (const char * pc_name);

Deletes an existing file.

bool t1 QuerySize (t Fileld o file, t FileSize & o_size);

Retrieves the size of the specified file and stores the result in 0_size.

bool t1 QueryPos (t Fileld o file, t FileSize & o_pos):

Retrieves the file pointer of the specified file and stores the result in o_pos.

Spirick Tuning Reference Manual Page 109

bool t1_SeekAbs (t Fileld o file, t FileSize o pos);

Moves the file pointer of the specified file to the absolute position o pos (an offset from the beginning of
the file).

bool t1 SeekRel (t Fileld o file, t FileSize o pos);

Moves the file pointer of the specified file to the relative position o_pos (relative to the current position).

bool t1 Truncate (t Fileld o file, t FileSize o size);

Sets the size for the specified file to o_size.

pool t1 Read (t Fileld o _file, void * pv_dst, t FileSize o_len);

Reads o _len bytes from the specified file to the buffer pv_dst and moves the file pointer.

bool t1 Write (t _Fileld o file, const void * pv_src, t FileSize o _len);

Writes o_len bytes from the buffer pv_src to the specified file and moves the file pointer.

Appropriate Class

The class ct_File relies on the global functions of this section.

3.1.18 Directory (tuning/sys/cdir.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The following functions can be used to create, move and delete directories. All functions return true on

success and false on failure, no exceptions are thrown.

Functions
bool t1_QueryCurrentDirectory (const char * pc_drive, t UInt u_driveLen, ct String & co_currentDirectory);

Retrieves the current directory and stores the result in co_currentDirectory. MS Windows only: Retrieves
the current directory of the drive (pc_drive, u_drivelen). If u_drivelen equals zero the current drive is used.

bool t1_CreateDirectory (const char * pc_name);

Creates the new directory pc_name.

bool t1_MoveDirectory (const char * pc_old, const char * pc_new);

Moves (renames) a directory either in the same directory or across directories.

bool t1_DeleteDirectory (const char * pc_name);

Deletes the existing directory pc_name.
Appropriate Class

The class ct _Directory relies on the global functions of this section.

3.1.19 System-Related Information (tuning/sys/cinfo.hpp)

The following functions retrieve several system-related information. Strings are static allocated.

Spirick Tuning Reference Manual Page 110

Structure Declaration
struct st _FileSystemInfo

t UInte4 u_TotalBytes;
t_UInted u_FreeBytes;

t UInte4 u_AvailableBytes;
>

The struct st_FileSystemInfo provides information about a mounted filesystem (a disk volume).
u_TotalBytes: The total number of bytes on a filesystem.

u_FreeBytes: The total number of free bytes on a filesystem.

u_AvailableBytes: The total number of free bytes on a filesystem that are available to the curr. user.

Structure Declaration

struct st_HardwareInfo

{

t_Ulnted u_TotalBytes;

t _UInted u_AvailableBytes;
unsigned u_TotalProcessors;
unsigned u_AvailableProcessors;
const char * pc_CPUName;

b

The struct st_HardwareInfo provides information about hardware components.
u_TotalBytes: The amount of physical memory.

u_AvailableBytes: The amount of physical memory currently available.
u_TotalProcessors: The number of logical processors (CPU cores).

u_AvailableProcessors: The number of logical processors (CPU cores) currently available.
pc_CPUName: The name of the CPU.

Note that if a 32-bit process is running in a 64-bit environment, the reported memory size may be
greater than 4 GB.

Structure Declaration

struct st_ProcessMemoryInfo

{

t Ulnt u_VMBytes;
t Ulnt u_RSSBytes;
b

The struct st_ProcessMemoryInfo provides information about the memory usage of the current process.
u_VMBytes: The virtual memory size (memory that is committed for the process).
u_RSSBytes: The resident set size (memory that is currently resident in physical memory).

Note that the calculation of these values is OS dependent, e.g. the inclusion of shared memory.

Structure Declaration

enum et _Compiler

ec_CompilerMSVC,
ec_CompilerGCC

)i
struct st _CompilerInfo

et _Compiler eo_Compiler;

Spirick Tuning Reference Manual Page 111

const char * pc_CompilerVersion;
const char * pc_RuntimeVersion;

>

The struct st_CompilerInfo provides information about the compiler and the runtime system.
eo_Compiler: The compiler type.

pc_CompilerVersion: The compiler version.

pc_RuntimeVersion: The runtime version.

Structure Declaration

enum et _System

ec_SystemMSWindows,
ec SystemLinux

b
struct st_SystemInfo
{
et System eo_System;
const char * pc_SystemVersion;
const char * pc_ComputerName;
const char * pc_UserName;
b

The struct st_SystemInfo provides information about the operating system.
eo_System: The operating system type.

pc_SystemVersion: The operating system version.

pc_ComputerName: The name of the computer.

pc_UserName: The name of the current user.

Structure Declaration
struct st_BatteryInfo

{

bool b ACLine;

bool b BatteryFound;
int i _LifePercent;

b

The struct st _BatteryInfo provides information about the power supply.
b ACLine: Is the system running on line power?

b BatteryFound: Does the system contain a battery?

i_LifePercent: The percentage of full battery charge remaining.

Functions
bool t1 QueryFileSystemInfo (const char * pc _path, st FileSystemInfo * pso_info);

Retrieves information about the specified filesystem and stores the result in pso_info.

bool t1_QueryHardwareInfo (st_HardwareInfo * pso_info);

Retrieves information about hardware components and stores the result in pso_info.

bool t1_QueryProcessMemoryInfo (st ProcessMemoryInfo * pso_info);

Retrieves information about the memory usage and stores the result in pso_info.

bool t1_QueryCompilerInfo (st CompilerInfo * pso_info);

Retrieves information about the compiler and stores the result in pso_info.

Spirick Tuning Reference Manual Page 112

pbool t1_QuerySystemInfo (st SystemInfo * pso_info);

Retrieves information about the operating system and stores the result in pso_info.

bool t1_QueryBatteryInfo (st BatteryInfo * pso_info);

Retrieves information about the power supply and stores the result in pso_info.

3.2 Strings and Filenames

3.2.1 String Template (tuning/string.h)

The Spirick string classes manage null-terminated strings and contain additionally a length attribute. The
terminating null character ensures compatibility with many other API’s. The redundant length attribute
speeds up string operations. Position values are zero-based. The string length does not count the
terminating null character. Length values refer to the number of characters, not to the size in bytes.

The class template gct _String is the base class of all other string classes. The first template parameter
t block must at least contain the character block interface, e.g. gct CharBlock <ct Chn32Block, char>. To
reduce the memory consumption of empty strings, it is recommended to use the template

gct NullDataBlock, e.g. gct _CharBlock <gct NullDataBlock <ct Chn32Block, char>, char>. The second template
parameter t_staticStore must be a store class with static methods, e.g. ct Chn32Store. It is used for
temporary data inside of the method ReplaceAll.

Base Class

gct_CharBlock (see above 'Character Block')

Template Declaration

template <class t block, class t staticStore>
class gct_String: public t_block
{
public:
typedef t block t Block;
typedef t staticStore t StaticStore;
typedef t block::t Char t Char;
typedef t block::t Size t Size;

inline gct String O);

inTine gct_String (t_Char c_init);

inline gct _String (t_Char c_init, t Size o_len):

inTine gct_String (const t _Char * pc_init);

inTine gct String (const t Char * pc_init, t Size o _len);
inline gct_String (const gct_String & co_init);

inline t_UInt GetHash () const;

inline bool IsEmpty () const:

inline t_Size GetMaxLen () const;

inline t_Size GetLen () const;

inTine const t Char * GetStr () const;

inTine const t Char * operator () () const;

inTine const t Char * GetStr (t Size o pos) const;
inline const t_Char * operator () (t_Size o0 pos) const;

inline t Char & GetChar (t_Size o_pos) const;
inTine t _Char & operator [] (t _Size o _pos) const;
inTine t _Char & GetRevChar (t_Size o _pos) const;
gct_String SubStr (t_Size o _Ten) const;

gct _String RevSubStr (t_Size o _len) const;

Spirick Tuning Reference Manual Page 113

gct _String
gct _String

t Int
t Int
t Int

t Int
t Int
t Int

inline
inline
inline
inline

inline
inline
inline
inline

inline
inline
inline
void
inline
void
inline
inline
void
inline
void

inline
inline
inline
inline
inline
inline
inline
inline
void
void
void
void
void
t Size

int
int
int
int

inline
inline
inline
inline

inline
inline
inline
inline
inline
inline
inline
inline

int
int
int
int

int
int
int
int

void
void
void

void

void
void

void

void
void
void
void
void
void
void
void

bool
bool
bool
bool

bool
bool
booT
bool
boo'
boo'
booT
booT

SubStr (t_Size o pos, t Size o len) const;
operator () (t _Size o pos, t Size o_len) const;

First (t_Char c_search, t Size o pos =
First (const t _Char * pc_search, t Size o _pos = 0) const;
First (const gct String & co_search, t Size o pos = 0) const;

Last (t_Char c_search, t Size o _pos =
Last (const t _Char * pc_search, t Size o pos = 0) const;
Last (const gct String & co_search, t Size o _pos = 0) const;

CompSubStr (t_Size o_pos,
CompSubStr (t_Size o pos,
CompSubStr (t _Size o pos,
CompSubStr (t_Size o pos,

CompTo
CompTo
CompTo
CompTo

~ o~~~

Clear ():

t Char c_comp) const;
const t_Char * pc_comp) const;
const t_Char * pc_comp, t Size o _len) const;
const gct_String & co_comp) const;

Assign (t_Char c_asgn);

Assign (t _Char c_asgn, t Size o len);
Assign (const t Char * pc_asgn);
Assign (const t _Char * pc_asgn, t Size o_Ten);
Assign (const gct String & co_asgn);
Append (t_Char c_app);

Append (t_Char c_app, t _Size o _len);

Append
Append

Insert
Insert
Insert
Insert

t Size
t Size
t Size
t Size
Insert (t_Size
Delete (t_Size
Delete (t_Size

(
(
(
(
(
(

0_pos,
0_pos,
0_pos,
0_pos,
0_pos,

0_pos
0_pos

(const t Char * pc_app);
Append (const t Char * pc_app, t Size o_Ten);
(const gct String & co_app);

t Char c_ins);

)
. t Size o len);

DeleteRev (t Size o len);

Replace (t_Size
Replace (t Size
Replace (t_Size
Replace (t _Size
Replace (t _Size

0_po
0_po
0_po
0_po
0_po

s, t Size o _dellen,
s, t Size o_dellen,
s, t Size o _dellen,
s, t Size o_dellen,
s, t Size o _dellen,

0) const;

0) const:

t Char c_comp) const;

const t_Char * pc_comp) const;

const t _Char * pc_comp, t Size o_len) const;
const gct_String & co_comp) const;

t Char c_ins, t Size o_len);

const t _Char * pc_ins);

const t Char * pc_ins, t Size o_Ten);
const gct_String & co_ins);

t Char c_ins);

t Char c_ins, t Size o _insLen);

const t Char * pc_ins);

const t Char * pc_ins, t Size o_inslLen);
const gct String & co_ins);

ReplaceAll (const gct String & co_search, const gct String & co_replace);

AssignF (const t Char * pc_format,
AppendF (const t Char * pc_format,

InsertF (t_Size o_pos, const t Char * pc_format, ...);

ReplacefF (t _Size o pos, t Size o _dellLen, const t Char * pc_format, ...);
ToUpper ();

TolLower ()

ToUpper2 ();
ToLower2 ();

operator == (co
operator == (co
operator != (co
operator != (co
operator < (co
operator < (co
operator <= (co
operator <= (co

nst t Char * pc_comp) const;
nst gct_String & co_comp) const;
nst t Char * pc_comp) const;
nst gct_String & co_comp) const;
nst t Char * pc_comp) const;
nst gct_String & co_comp) const;
nst t Char * pc_comp) const;
nst gct_String & co_comp) const;

Spirick Tuning

Reference Manual

Page 114

inline bool operator > (const t _Char * pc_comp) const;

inline bool operator > (const gct String & co_comp) const;
inline bool operator >= (const t Char * pc_comp) const;
inline bool operator >= (const gct String & co_comp) const;

inline gct String
inTine gct String
inTine gct String
inTine gct _String
inTine gct_String
inline gct _String

operator = (t_Char c_asgn);

operator = (const t _Char * pc_asgn);
operator = (const gct String & co_asgn);
operator += (t_Char c_app);

operator += (const t_Char * pc_app);
operator += (const gct_String & co_app);

o 0o o oo go o

inTine gct String operator + (t_Char c_app) const;
inTine gct _String operator + (const t _Char * pc_app) const;
inline gct String operator + (const gct String & co_app) const;

friend inline gct _String operator + (t Char c_init, const gct String & co_app):
friend inline gct_String operator + (const t _Char * pc_init, const gct String & co_app);
template <class t_string>
void Convert (const t string & co_asgn);
template <class t_string>
bool MbConvert (const t_string & co_asgn);
template <class t_asgnChar>
bool MbConvert (const t_asgnChar * po_asgn);

}:

Kinds of String Parameters

—_

Single character (t_Char c): The character is interpreted as a string of length 1.

2. Multiple characters (t Char c, t Size o_len): The parameter list is interpreted as a string of length
o_len filled with the character c.

3. Null-terminated string (const t_Char * pc): The string is processed up to the null character.

4. String with length information (const t _Char * pc, t Size o_len): The first o_len characters of the string
are processed. The string must not contain null characters.

5. String object (const gct String & co): The complete string co is processed.

6. Formatted string (const t Char * pc_format, ...): The parameter list is interpreted like a printf

parameter list. This kind of string parameters can’t be used by overloaded methods.

Self-Assignment

Some frequently used string methods check for self-assignment. In some cases, a check for self-
assignment is very expensive, e.g. while processing substrings. Please refer to the description of the
respective methods

Data Types
typedef t block::t Size t Size;

The nested type t Size is used for position and length values.

Constructors
gct String ();

Initializes an empty string object.

gct_String (t_Char c_init);

Initializes a string object of length 1 containing the character c_init.

gct String (t Char c_init, t _Size o len);

Initializes a string object of length o_Ten containing o_len characters c_init.

Spirick Tuning Reference Manual Page 115

gct String (const t Char * pc_init);

Initializes a string object containing a copy of the null-terminated string pc_init.

gct String (const t Char * pc_init, t Size o _len);

Initializes a string object of length o_len containing a copy of the first o_len characters of pc_init.

gct String (const gct String & co_init);

Initializes a string object containing a copy of the string object co_init.

Access to Length and Contents
t UInt GetHash () const;

Calculates the string’s hash value.

bool IsEmpty () const;

Returns true if the string is empty.

t Size GetMaxLen () const;

Returns the maximum length (without the terminating null character).

t Size GetLen () const;

Returns the current length (without the terminating null character).
const t _Char * GetStr () const;
const t_Char * operator () () const;

Returns a pointer to the first character. If the string is empty, the methods return a pointer to the
terminating null character.

const t_Char * GetStr (t_Size o_pos) const;

const t Char * operator () (t_Size o pos) const;
Returns a pointer to the character at position o _pos (0_pos <= GetLen ()). If o_pos equals GetlLen (), the
methods return a pointer to the terminating null character.

t Char & GetChar (t_Size o _pos) const;

t Char & operator [] (t_Size o_pos) const;:

Returns a reference to the character at position 0 pos (0_pos < GetlLen ()).

t Char & GetRevChar (t Size o pos) const;
Returns a reference to the character at position GetlLen () - 1 - 0_pos (o _pos < GetLen ()). If o_pos equals
zero, the method returns a reference to the last character.

gct _String SubStr (t Size o_len) const;:

Returns a string object containing a copy of the first o_len characters (o_len <= GetlLen ()).

gct_String RevSubStr (t Size o Ten) const;

Returns a string object containing a copy of the last o len characters (o_Ten <= GetlLen ()).
gct_String SubStr (t Size o pos, t Size o_len) const;
gct _String operator () (t _Size o pos, t Size o len) const;

Returns a string object containing a copy of the o_len characters beginning at position o _pos (o_pos +
0_len <= Getlen ()).

Spirick Tuning Reference Manual Page 116

Search for Characters and Strings

t Int First (t_Char c_search, t Size o _pos = 0) const;

If successful, it returns the position of the first occurrence of c_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int First (const t_Char * pc_search, t Size o pos = 0) const;

If successful, it returns the position of the first occurrence of pc_search starting at position o_pos.
Otherwise it returns a negative value.

t Int First (const gct String & co_search, t Size o pos = 0) const;

If successful, it returns the position of the first occurrence of co_search starting at position o_pos.
Otherwise it returns a negative value.

t Int Last (t _Char c_search, t Size o pos = 0) const;

If successful, it returns the position of the last occurrence of ¢ _search starting at position o_pos.
Otherwise it returns a negative value.

t Int Last (const t _Char * pc_search, t Size o pos = 0) const;

If successful, it returns the position of the last occurrence of pc_search starting at position o_pos.
Otherwise it returns a negative value.

t Int Last (const gct String & co_search, t Size o pos = 0) const;

If successful, it returns the position of the last occurrence of co_search starting at position o_pos.
Otherwise it returns a negative value.

Compare Substrings

int

int

int

int

The return value of the following methods is less than zero if this < param, equal to zero if this == param,
and greater than zero if this > param. The characters are compared as unsigned values.

The following methods compare a substring beginning at position o_pos to the string specified by the
arguments. In contrast to the full string comparison (see below), a substring comparison ends at the end
of the shorter string.

CompSubStr (t_Size o _pos, t Char c_comp) const;

Compares the substring beginning at position o _pos to the character c_comp.

CompSubStr (t_Size o _pos. const t_Char * pc_comp) const;

Compares the substring beginning at position o _pos to the null-terminated string pc_comp.

CompSubStr (t _Size o_pos, const t Char * pc_comp, t Size o _len) const;

Compares the substring beginning at position o _pos to the first o _len characters of the string pc_comp.

CompSubStr (t_Size o _pos, const gct_String & co _comp) const;

Compares the substring beginning at position 0 _pos to the string object co_comp.

Compare Strings

The return value of the following methods is less than zero if this < param, equal to zero if this == param,
and greater than zero if this > param. The characters are compared as unsigned values.

The following methods compare this string to the string specified by the arguments. If the strings are
equal when compared up to the shortest length, the longer string is considered greater than the shorter
one.

Spirick Tuning Reference Manual Page 117

int CompTo (t Char c_comp) const;

Compares this string to the character c_comp.

int CompTo (const t _Char * pc_comp) const;

Compares this string to the null-terminated string pc_comp.

int CompTo (const t Char * pc_comp, t Size o _len) const;

Compares this string to the first o_len characters of the string pc_comp.

int CompTo (const gct String & co_comp) const;

Compares this string to the string object co_comp.

Assignment
void Clear ();

Clears the string.

void Assign (t_Char c_asgn);

Replaces the contents with the character c_asgn.

void Assign (t _Char c asgn, t Size o len);

Replaces the contents with o _Ten characters c_asgn.

void Assign (const t Char * pc_asgn);:

Replaces the contents with a copy of the null-terminated string pc_asgn (check for self-assignment).

void Assign (const t Char * pc_asgn, t Size o _len);
Replaces the contents with a copy of the first o_len characters of the string pc_asgn (no check for self-
assignment).

void Assign (const gct String & co_asgn);

Replaces the contents with a copy of the string object co_asgn (check for self-assignment).

Append
void Append (t_Char c_app);

Appends the character c_app.

void Append (t _Char c_app, t Size o _len);

Appends o _len characters c_app.

void Append (const t Char * pc_app);

Appends a copy of the null-terminated string pc_app (check for self-assignment).

void Append (const t Char * pc_app, t Size o_len);

Appends a copy of the first o_len characters of the string pc_app (no check for self-assignment).

void Append (const gct String & co_app):

Appends a copy of the string object co_app (check for self-assignment).

Spirick Tuning Reference Manual Page 118

Insert
void Insert (t Size o pos, t Char c_ins);

Inserts the character c_ins at the position o _pos (0_pos <= GetLen ()).

void Insert (t Size o pos, t Char c_ins, t Size o_Ten);

Inserts 0_len characters c_ins at the position 0_pos (o_pos <= GetlLen ()).

void Insert (t Size o _pos, const t Char * pc_ins);

Inserts a copy of the null-terminated string pc_ins at the position o _pos (0 pos <= GetLen ()).

void Insert (t _Size o_pos, const t Char * pc_ins, t Size o_len);

Inserts a copy of the first o_len characters of the string pc_ins at the position o _pos (0_pos <= GetLen ()).

void Insert (t_Size o _pos, const gct String & co_ins);

Inserts a copy of the string object co_ins at the position 0 _pos (o_pos <= GetlLen ()).

Delete

void Delete (t Size o pos);

Deletes the characters from the position o _pos to the end of the string (o_pos <= GetlLen ()).

void Delete (t Size o pos, t Size o len);

Deletes o_len characters starting at the position 0 _pos (o _pos + o_Ten <= GetlLen ()).

void DeleteRev (t Size o len);

Deletes the last 0_Ten characters (o_len <= GetlLen ()).

Replace

void Replace (t Size o pos, t Size o dellLen, t Char c_ins);
Replaces o _dellLen characters starting at position o_pos with the character c_ins (o_pos + o_dellLen <= GetLen
0).

void Replace (t Size o pos, t Size o dellen, t Char c_ins, t Size o_insLen);
Replaces o _dellLen characters starting at position o _pos with o_insLen characters c_ins (0 _pos + o _dellen <=
GetLen ()).

void Replace (t _Size o pos, t Size o dellen, const t Char * pc_ins);
Replaces o _dellen characters starting at position o pos with a copy of the null-terminated string pc_ins
(0_pos + o _dellen <= GetlLen ()).

void Replace (t _Size o_pos, t Size o _dellen, const t Char * pc_ins, t Size o_insLen);
Replaces o _dellen characters starting at position o_pos with a copy of the first o_insLen characters of the
string pc_ins (o0 pos + o_dellen <= GetlLen ()).

void Replace (t Size o pos, t Size o _dellen, const gct String & co_ins);

Replaces o _dellen characters starting at position o_pos with a copy of the string object co_ins (o_pos +
o dellen <= GetLen ()).

Spirick Tuning Reference Manual Page 119

Replace All

t Size ReplaceAll (const gct String & co_search, const gct String & co_replace);

Replaces all occurrences of co_search with a copy of co_replace and returns the number of replacements
done. The implementation is optimized for minimal reallocations.

Formatted String Parameters

int

int

int

int

The following methods work like Assign, Append, Insert and Replace, but the parameter list is interpreted
like a printf parameter list. All methods return the length of the resulting string parameter. On failure, a
negative number is returned (see below 'Formatted Strings').

AssignF (const t Char * pc_format, ...);

Replaces the contents with the formatted string parameter.

AppendF (const t Char * pc_format, ...);

Appends the formatted string parameter.

InsertF (t Size o pos, const t Char * pc_format, ...):

Inserts the formatted string parameter at the position o _pos (o_pos <= GetlLen ()).

ReplaceF (t Size o pos., t Size o dellLen, const t Char * pc_format, ...);

Replaces o_dellen characters starting at position o_pos with the formatted string parameter (o_pos +
o _dellen <= GetLen ()).

Upper/Lower Case

The following methods use global system interface functions (see above 'Character and String
Conversion').

bool ToUpper ();

Converts the string to upper case (Windows-1252).

bool ToLower ():

Converts the string to lower case (Windows-1252).

bool ToUpper2 ();

Converts the string to upper case (partially UTF compatible).

bool ToLower2 ();

Converts the string to lower case (partially UTF compatible).

Comparison Operators

The following comparison functions are based on the method CompTo (see above).

Spirick Tuning Reference Manual Page 120

bool operator == (const t Char * pc_comp) const;
bool operator == (const gct String & co_comp) const;
bool operator != (const t _Char * pc_comp) const;
bool operator != (const gct String & co_comp) const;
bool operator < (const t_Char * pc_comp) const;
bool operator < (const gct String & co_comp) const;
bool operator <= (const t _Char * pc_comp) const;
bool operator <= (const gct String & co_comp) const;
bool operator > (const t _Char * pc_comp) const;
bool operator > (const gct _String & co_comp) const;
bool operator >= (const t _Char * pc_comp) const;
bool operator >= (const gct String & co_comp) const;

Assignment Operators
gct _String & operator = (t Char c_asgn);:

Replaces the contents with the character c¢_asgn.

gct_String & operator = (const t_Char * pc_asgn);

Replaces the contents with a copy of the null-terminated string pc_asgn (check for self-assignment).

gct String & operator = (const gct String & co_asgn);

Replaces the contents with a copy of the string object co_asgn (check for self-assignment).

Append Operators
gct _String & operator += (t _Char c_app);
Appends the character c_app.

gct String & operator += (const t _Char * pc_app);

Appends a copy of the null-terminated string pc_app (check for self-assignment).

gct String & operator += (const gct String & co_app);

Appends a copy of the string object co_app (check for self-assignment).

Concatenation Operators
The following concatenation operators return a temporary object containing the concatenation of the

two operands. The two operands remain unchanged.

gct_String operator + (t_Char c_app) const;

gct_String operator + (const t Char * pc_app) const;

gct_String operator + (const gct String & co_app) const;

friend gct String operator + (t Char c_init, const gct String & co_app):

friend gct _String operator + (const t Char * pc_init, const gct String & co_app):

Conversion

The following methods use global system interface functions to convert char and wchar_t strings (see
above 'Character and String Conversion').

template <class t_string> void Convert (const t string & co_asgn);:

Replaces the contents with a copy of the string object co_asgn (no multibyte conversion).

template <class t_string> bool MbConvert (const t string & co_asgn);

Replaces the contents with a copy of the string object co_asgn (multibyte conversion).

Spirick Tuning Reference Manual Page 121

template <class t_asgnChar> bool MbConvert (const t asgnChar * po_asgn);

Replaces the contents with a copy of the null-terminated string pc_asgn (multibyte conversion).

3.2.2 String Instances (tuning/xxx/[w]string.h)

Some template instances are predefined to easily use the string interface. The macros
STRING DCL(t Block, StoreSpec) and WSTRING DCL(t Block, StoreSpec) generate for a wrapper class of a
global store one string class.

The macro
STRING DCL (gct_AnyBlock, ct Any32)
expands to:

typedef gct String <gct_CharBlock <gct NullDataBlock
<gct_AnyBlock <ct Any32Store>, char>, char>, ct Any32Store> ct Any32String;

The macro
WSTRING DCL (gct_AnyBlock, ct Any32)
expands to:

typedef gct String <gct CharBlock <gct NullDataBlock
<gct_AnyBlock <ct Any32Store>, wchar_t>, wchar t>, ct Any32Store> ct Any32WString;

Every directory of a global store contains the files 'string.h' and 'wstring.h'.

The file "tuning/std/[w]string.h' contains the following declaration:
typedef ... ct Std [W]String;

The file "tuning/rnd/[w]string.h’ contains the following declaration:
typedef ... ct Rnd [W]String;

The file "tuning/chn/[w]string.h' contains the following declaration:
typedef ... ct Chn [W]String;

3.2.3 Polymorphic String Classes (tuning/[w]string.hpp)

Polymorphic string classes are derived from the abstract base class ct Object. They can be managed by
polymorphic collections and used by other polymorphic API’s. The two string classes ct _String and
ct_WString are predefined, other polymorphic string classes can be defined if necessary. The macro
0BJ_STRING DCL(StoreSpec) generates a string class using a predefined template instance.

The macro

0BJ_STRING DCL(ct_Chn 0bj)

expands to:

class ct _Chn ObjectString: public ct _Chn ObjString
pué]ic:

inTine ct_Chn_ObjectString ();
inTine ct _Chn _ObjectString (t _Char c_init);

Spirick Tuning Reference Manual Page 122

inline ct Chn ObjectString (t_Char c_init, t Size o_len);

inTine ct _Chn_ObjectString (const t Char * pc_init);

inTine ct_Chn_ObjectString (const t Char * pc_init, t Size o_Ten);
inTine ct _Chn _ObjectString (const ct Chn ObjString & co_init);
inTine ct_Chn_ObjectString (const ct Chn ObjectString & co_init);
TL_CLASSID (ct_Chn ObjectString)

virtual bool operator < (const ct_Object & co_comp) const;

virtual t_UInt GetHash () const;

inTine ct_Chn_ObjectString & operator = (t_Char c_asgn);

inTine ct _Chn_ObjectString & operator = (const t _Char * pc_asgn);
inline ct_Chn ObjectString & operator = (const ct _Chn_ObjectString & co_asgn);
b

Additional Methods

bool operator < (const ct_Object & co_comp) const;

This comparison operator is used by sorted array collections.

The file "tuning/string.hpp’ contains the following declaration:
0BJ_STRING DCL(ct_Chn 0bj)
typedef ct _Chn ObjectString ct String;

The file "tuning/wstring.hpp' contains the following declaration:
0BJ_STRING DCL(ct_Chn WObjJ)
typedef ct _Chn _WObjectString ct WString;

3.2.4 Filename (tuning/filename.hpp)

The class ct_FileName provides several methods to manipulate filenames. A filename is stored as a null-
terminated string. Filename components are determined by offset values stored in the filename object.

A filename consists of four components: Drive, Path, Name and Ext. The combination of Drive and Path is
called DrivePath, the combination of Name and Ext is called NameExt. The path component always includes a
terminating [back]slash. A Path without the terminating [back]slash is called PurePath, a DrivePath without
the terminating [back]slash is called PureDrivePath.

The class ct_FileName supports the Universal Naming Convention (UNC). The Drive component can
contain a drive specification (e.g. "C:") or a network path (e.g. "\\server\\share"). The methods HasDrive
and HasUNC can be used to distinguish between these two cases.

The MS Windows implementation automatically replaces slash characters with backslash characters
(Linux impl. vice versa). The terminating [back]slash of a path component is appended if necessary. The
extension component does not include a period.

There are two different assignment methods. The method 'Assign as Name' tries to locate the name and
extension components at the end of the string. The method 'Assign as Path' interprets the whole string
as a drive-path component.

Base Classes

ct Object (see above 'Abstract Object')
ct_String (see above 'Polymorphic String')

Class Declaration

class ct_FileName: public ct String

{

Spirick Tuning Reference Manual Page 123

ct_FileName &
ct_FileName &

inline

void

void
inline
inline
void

void
void

inline

bool
bool
bool
bool
bool
bool
booT
bool

inline
inline
inline
inline
inline
inline
inline
inline
inline
inline

inline
inline
inline
inline

inline
inline
inline
inline
inline

inline
inline
inline
inline
inline
inline
inline
inline

inline
void
inline
inline
void
inline

void

t Size
t Size
t Size
t Size
t Size
t Size
t Size
t Size
t Size
t Size

t Size
t Size
t Size
t Size

char
char
char
char
char

const
const
const
const
const

ct String
ct String
ct_String
ct_String
ct String
ct_String
ct String
ct_String

void

void
void

void

inline void
void
inline
inline
void
inline
inline
void

void
void

void
void

* ok ok X X

ct_FileName ();

ct _FileName (const char * pc_init);
operator = (const char * pc_asgn);
operator = (const ct FileName & co_asgn);

AssignAsPath (const char * pc_path);

AssignAsPath
AssignAsPath
AssignAsName
AssignAsName

(const
(const
(const
(const

char * pc_path, t Size u_len);
ct _String & co path);

char * pc_name);

char * pc_name, t Size u_len);

AssignAsName (const ct String & co_name);
HasDriveOrUNC () const;

HasDrive () const;

HasUNC () const;

HasPath () const;

HasName () const;

HaskExt () const;

HasDot () const;

HasWildCards () const;

GetDriveLen () const;
GetPathLen () const;
GetPurePathLen () const;
GetDrivePathLen () const;
GetPureDrivePathLen () const:
GetNamelLen () const;
GetExtLen () const;
GetNameExtlLen () const;
GetDotLen () const;

GetAllLen () const;

GetDriveOffs () const;
GetPathOffs () const;
GetNameOffs () const;
GetExtOffs () const;

GetDriveStr () const;
GetPathStr () const;
GetNameStr () const;
GetExtStr () const;
GetA11Str () const;

GetDrive () const;

GetPath () const;
GetPurePath () const;
GetDrivePath () const;
GetPureDrivePath () const;
GetName () const;

GetExt () const;
GetNameExt () const;

SetDrive (const char * pc);

SetDrive (const char * pc, t Size u_len);
SetDrive (const ct _String & co);

SetPath (const char * pc);

SetPath (const char * pc, t Size u_len);
SetPath (const ct _String & co);

SetDrivePath (const char * pc);
SetDrivePath (const char * pc, t Size u_len);
SetDrivePath (const ct_String & co);

SetName (const char
SetName (const char
SetName (const ct _String & co);

SetExt (const char * pc);

SetExt (const char * pc, t Size u_len);

*pc);
* pc, t Size u_len);

Spirick Tuning

Reference Manual

Page 124

inline void SetExt (const ct String & co);

inline void SetNameExt (const char * pc);
void SetNameExt (const char * pc, t Size u_len);
inline void SetNameExt (const ct String & co);
inline void CopyDriveFrom (const ct_FileName * pco_copy);
inline void CopyPathFrom (const ct _FileName * pco _copy);
inline void CopyDrivePathFrom (const ct_FileName * pco_copy);
inline void CopyNameFrom (const ct _FileName * pco_copy);
inline void CopyExtFrom (const ct _FileName * pco_copy);
inline void CopyNameExtFrom (const ct_FileName * pco_copy);
inline void InsertPath (const char * pc_path);
void InsertPath (const char * pc_path, t Size u_len);
inTine void InsertPath (const ct_String & co_path);
inline void InsertDrivePath (const char * pc_path);
void InsertDrivePath (const char * pc_path, t Size u_len);
inTine void InsertDrivePath (const ct_String & co_path);
inline void AppendPath (const char * pc_path);
void AppendPath (const char * pc_path, t Size u_len);
inline void AppendPath (const ct String & co_path);
void CompressPath ();
bool IsAbs () const;
bool IsRel () const;
void ToAbs (const char * pc_currDrivePath, bool b withDrive = true);
void ToRel (const char * pc_currDrivePath, bool b withDrive = false);
b
Methods

ct FileName ();

Initializes an empty filename object.

ct FileName (const char * pc_init);

Initializes a filename object by calling the method AssignAsName.

ct _FileName & operator = (const char * pc_asgn);

Calls the method AssignAsName.

ct_FileName & operator = (const ct FileName & co_asgn);

Replaces the contents with a copy of the filename object co_asgn.

void AssignAsPath (const char * pc_path);
void AssignAsPath (const char * pc path, t Size u_len);
void AssignAsPath (const ct_String & co_path);

Replace the contents with a copy of the arguments. These methods interpret the whole string as a
drive-path component.

void AssignAsName (const char * pc_name);
void AssignAsName (const char * pc name, t Size u_len);
void AssignAsName (const ct String & co_name);

Replace the contents with a copy of the arguments. These methods try to locate the name and
extension components at the end of the string.

Spirick Tuning Reference Manual Page 125

bool HasDriveOrUNC () const;
bool HasDrive () const:

bool HasUNC () const;

bool HasPath () const;

bool HasName () const;

bool HaskExt () const;

These methods return true if a specific component exists.

bool HasDot () const;

Returns true if there is a period (dot) between name and extension.

bool HasWildCards () const;

Returns true if name or extension contain wildcard characters ('*' or '?").

t Size GetDriveLen () const;

t Size GetPathLen () const;

t Size GetPurePathLen () const;

t Size GetDrivePathLen () const;

t Size GetPureDrivePathLen () const;
t Size GetNamelen () const;

t Size GetExtLen () const;

t Size GetNameExtLen () const;

These methods return the length of a specific component.

t Size GetDotLen () const;

Returns 1 if there is a period (dot) between name and extension, otherwise zero is returned.

t Size GetAllLen () const;

Returns the length of the whole filename.

t Size GetDriveOffs () const;
t Size GetPathOffs () const:
t Size GetNameOffs () const;
t Size GetExtOffs () const:

These methods return the position (offset) of a specific component.

const char * GetDriveStr () const;
const char * GetPathStr () const;
const char * GetNameStr () const;
const char * GetExtStr () const;
const char * GetA11Str () const;

These methods return a pointer to the beginning of a specific component.

ct_String GetDrive () const;
ct_String GetPath () const;
ct_String GetPurePath () const;
ct_String GetDrivePath () const;

ct _String GetPureDrivePath () const;
ct_String GetName () const;
ct_String GetExt () const;

ct_String GetNameExt () const;

These methods return a specific component as a string object.

Spirick Tuning Reference Manual Page 126

void SetDrive (const char * pc);

void SetDrive (const char * pc, t Size u_len);
void SetDrive (const ct String & co);

void SetPath (const char * pc);

void SetPath (const char * pc, t Size u_len);
void SetPath (const ct String & co);

void SetDrivePath (const char * pc);

void SetDrivePath (const char * pc, t Size u_len);
void SetDrivePath (const ct String & co);

void SetName (const char * pc);

void SetName (const char * pc, t Size u_len);
void SetName (const ct String & co);

void SetExt (const char * pc);

void SetExt (const char * pc, t Size u_len);
void SetExt (const ct _String & co);

void SetNameExt (const char * pc);

void SetNameExt (const char * pc, t Size u_len);
void SetNameExt (const ct _String & co);

Replace the contents of a specific component with a copy of the arguments.
void CopyDriveFrom (const ct FileName * pco_copy);
void CopyPathFrom (const ct FileName * pco_copy);
void CopyDrivePathFrom (const ct FileName * pco _copy):
void CopyNameFrom (const ct FileName * pco_copy);

void CopyExtFrom (const ct FileName * pco_copy);
void CopyNameExtFrom (const ct FileName * pco copy);

Copy the contents of a specific component from another filename object.
void InsertPath (const char * pc_path);

void InsertPath (const char * pc path, t Size u_len);
void InsertPath (const ct String & co path);

Insert a copy of the arguments at the beginning of the path component.
void InsertDrivePath (const char * pc_path);

void InsertDrivePath (const char * pc_path, t Size u_len);
void InsertDrivePath (const ct String & co path);

Insert a copy of the arguments at the beginning of the path component and replace the drive
component.

void AppendPath (const char * pc_path);
void AppendPath (const char * pc_path, t Size u_len);
void AppendPath (const ct_String & co_path);

Append a copy of the arguments at the end of the path component.

void CompressPath ();

Compresses the path component, i.e. deletes ".\" and "path\..\" patterns.

bool IsAbs () const;

Returns true if the path component is an absolute path (beginning with a [back]slash).

bool IsRel () const;

Returns true if the path component is a relative path (not beginning with a [back]slash).

void ToAbs (const char * pc_currDrivePath, bool b withDrive = true);

Converts the path component, which is relative to the directory pc_currDrivePath, to an absolute path. If
b withDrive equals true, the drive component is copied from pc_currDrivePath, otherwise the drive
component is cleared.

Spirick Tuning Reference Manual Page 127

void ToRel (const char * pc_currDrivePath, bool b withDrive = false);

Converts the path component, which is an absolute path, to a path relative to the directory
pc_currDrivePath. If b withDrive equals true, the drive component is copied from pc_currDrivePath,
otherwise the drive component is cleared.

3.2.5 Formatted Strings (tuning/printf.hpp)

The char and wchar_t versions of t1_VSprintf interpret the parameter list like a printf parameter list. The
destination buffer is dynamically allocated. It is recommended to use the gct String methods AssignF,
AppendF, InsertF and Replacef instead of t1 VSprintf. See also the sample program 'tstring"'.

Functions

int t1 _VSprintf (char * * ppc_buffer, const char * pc_format, va_1ist o_arglList);
int t1_VSprintf (wchar_t * * ppc_buffer, const wchar_t * pc_format, va_1ist o arglList);

Formats the string pc_format with the parameters o _arglList and writes the resulting string to a
destination buffer which is allocated by malloc. On success, the length of the resulting string is returned
(without the terminating null character), and the buffer * ppc_buffer must be released by free. On failure,
a negative number is returned, and the pointer * ppc_buffer can be ignored.

3.2.6 String Sort Algorithm (tuning/stringsort.hpp)

This section describes an optimized string sort algorithm. Strings consist of characters, and characters
have a value range from O to 255. To sort values in this range, no special sort algorithm is required. The
values can be entered into an array of size 256. Afterwards the array can be iterated, and the values
will appear in sorted order. This method can be applied to the first, the second, the third etc. character
of a set of strings.

The sort order can be changed by a 'sort page' of size 256. The first entry of a sort page must be equal
to zero. The private method GetDefaultSortPage returns a sort page containing consecutive numbers.

To sort N null-terminated strings, an array of N pointers to strings (const char * * ppc_strings) must be
prepared by the caller of the algorithm. The results are written to an array of N t_Int values (t_Int *
pi_sortedIndex) allocated by the caller. At the end of the calculation, this array will contain indices into
the string array in sorted order.

The computing time depends on the maximum number of leading equal characters. The sort algorithm

requires the following memory:

1. The input array char * apc [n] and the output array t_Int ai [n].

2. The array t_Int ai_temp [n] to store temporary chains.

3. x* 256 * sizeof (t_Int) bytes to store temporary order data. x is the maximum number of leading
equal characters.

Class Declaration

class ct_StringSort

{
public:
bool Sort (const char * * ppc_strings, t Int * pi _sortedIndex, t Int i numOfStrings,
const char * pc_sortPage = GetDefaultSortPage ());
b

Spirick Tuning Reference Manual Page 128

Methods

bool Sort (const char * * ppc_strings, t Int * pi_sortedIndex, t Int i _numOfStrings, const char * pc sortPage =
GetDefaultSortPage ());

Sorts the input data ppc_strings and stores the result in pi_sortedIndex. Temporary data are allocated and
released automatically.

3.2.7 Number Sort Algorithm (tuning/stringsort.hpp)

The string sort algorithm (see above) can be modified to sort unsigned integer values. A t UInt32 value
can be interpreted as a sequence of 4 unsigned characters. The implementation of the number sort
algorithm supports little-endian hardware.

Class Declaration
class ct_UInt32Sort

{
public:
bool Sort (const t _UInt32 * pu_ints, t Int * pi_sortedIndex,
t Int i_numOfInts);
s
Methods

bool Sort (const t UInt32 * pu_ints, t Int * pi_sortedIndex, t Int i _numOfInts);

Sorts the input data pu_ints and stores the result in pi_sortedIndex. Temporary data are allocated and
released automatically.

3.3 Files and Directories

3.3.1 Files (tuning/file.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_File provides an object oriented interface for the global file functions (see above 'File 1/0").
The methods TryOpen, Open, Create, Load, Save, Exists, Move, Copy and Delete must not be called while the
file is open.

Base Classes

ct Object (see above 'Abstract Object’)
ct_String (see above 'Polymorphic String')
ct _FileName (see above 'Filename’)

Class Declaration

class ct_File: public ct_FileName

{
public:
ct File ();
ct_File (const char * pc_init):

Spirick Tuning Reference Manual Page 129

ct FiTe (const ct FileName & co_init);

~ct File ();
ct File & operator = (const char * pc_asgn);
ct File & operator = (const ct FileName & co_asgn);
bool TryOpen (bool b _readOnly = true, bool b_sequential = true,
t UInt32 umilliSec = 0);
bool Open (bool b_readOnly = true, bool b_sequential = true);
bool Create (bool b _createNew = false);
bool Close ();
bool Load (ct_String * pco_str);
bool Save (const ct String * pco_str):
boo Exists ();
bool Move (const char * pc_new);
bool Copy (const char * pc_new, bool b overwrite = true);
booT Delete ();
bool QuerySize (t_FileSize & o _size) const;:
bool QueryPos (t_FileSize & o _pos) const;
bool EndOfFile (bool & b _eof) const;
bool SeekAbs (t_FileSize o _pos) const;
bool SeekRel (t_FileSize o pos) const;
bool Truncate (t _FileSize o_size) const;
bool Read (void * pv_dst, t FileSize o _len) const;
bool Write (const void * pv_src, t FileSize o _Tlen) const;
b
Methods
ct File ();

Initializes an empty file object.

ct File (const char * pc_init);

Initializes a file object by calling the method ct_FileName: :AssignAsName.

ct_File (const ct_FileName & co_init);

Initializes a file object by calling the copy constructor of ct_FileName.

~ct File ();

The destructor closes the file object.

ct_File & operator = (const char * pc_asgn);

Calls ct_FileName: :AssignAsName (pc_asgn).

ct_File & operator = (const ct_FileName & co_asgn);

Assigns a new filename.

bool TryOpen (bool b readOnly = true, bool b_sequential = true, t UInt32 u milliSec = 0);

Tries to open an existing file. The method will wait for at most u_milliSec milliseconds. The parameter
b readOnly determines the access mode. The parameter b_sequential is a hint to optimize file caching
(sequential or random access).

bool Open (bool b readOnly = true, bool b_sequential = true);

Opens an existing file. The parameter b_readOnly determines the access mode. The parameter
b sequential is a hint to optimize file caching (sequential or random access).

Spirick Tuning Reference Manual Page 130

bool Create (bool b createNew = false);
Creates a new file and opens it for read/write access. Returns false if b_createNew equals true and the
specified file already exists. Otherwise the function overwrites the existing file.

bool Close ();

Closes an open file.

bool Load (ct _String * pco_str);
Loads the entire contents of the file into the string object pco_str (open, read, close). The file must not
contain null characters.

bool Save (const ct String * pco_str);

Saves the entire contents of the string object pco_str into the file (open, write, close).

bool Exists ();

Returns true if the file exists.

bool Move (const char * pc_new):
Moves (renames) the file either in the same directory or across directories. On success the own filename
(base class ct_FileName) is changed as well.

bool Copy (const char * pc_new, bool b overwrite = true);
Copies the existing file to a new file. Returns false if b_overwrite equals false and the specified file
already exists.

bool Delete ();

Deletes the existing file.

bool QuerySize (t FileSize & o_size) const;

Retrieves the size of the open file and stores the result in o_size.

bool QueryPos (t FileSize & o_pos) const;

Retrieves the file pointer of the open file and stores the result in o_pos.

bool EndOfFile (bool & b _eof) const;

Sets b_eof to true if the file pointer is located at the end of the file.

bool SeekAbs (t FileSize o _pos) const;
Moves the file pointer of the open file to the absolute position o pos (an offset from the beginning of the
file).

bool SeekRel (t FileSize o pos) const;

Moves the file pointer of the open file to the relative position o pos (relative to the current position).

bool Truncate (t FileSize o size);

Sets the size for the open file to o_size.

bool Read (void * pv_dst, t FileSize o len) const;

Reads o _len bytes from the open file to the buffer pv_dst and moves the file pointer.

bool Write (const void * pv_src, t FileSize o_len) const;

Writes o_len bytes from the buffer pv_src to the open file and moves the file pointer.

Spirick Tuning Reference Manual Page 131

3.3.2 Directories (tuning/dir.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_Directory provides an object oriented interface for the global directory functions (see above
'sys/cdir.hpp’). This class uses the drive and path components of the base class ct_FileName
(PureDrivePath), the name and extension components of the filename are ignored.

Base Classes

ct Object (see above 'Abstract Object')
ct _String (see above 'Polymorphic String')
ct _FileName (see above 'Filename’)

Class Declaration

class ct Directory: public ct_FileName

{
public:
ct Directory ();
ct Directory (const char * pc_init);
ct Directory (const ct FileName & co_init);
ct Directory & operator = (const char * pc_asgn):
ct Directory & operator = (const ct FileName & co_asgn);
bool QueryCurrentDrive ();
bool QueryCurrentDirectory ():
booT QueryCurrentDriveDirectory ();
bool Create ();
bool Exists O):
bool Move (const char * pc_new);
bool Delete ():
b
Methods

ct Directory ():

Initializes an empty directory object.

ct Directory (const char * pc_init);

Initializes a directory object by calling the method ct_FileName::AssignAsPath.

ct_Directory (const ct_FileName & co_init);

Initializes a directory object by calling the copy constructor of ct_FileName.

ct _Directory & operator = (const char * pc_asgn);

Calls ct_FileName: :AssignAsPath (pc_asgn).

ct Directory & operator = (const ct FileName & co_asgn);

Assigns a new filename.

bool QueryCurrentDrive ();

Retrieves the current drive and stores the result in the drive component of the filename.

Spirick Tuning Reference Manual Page 132

bool QueryCurrentDirectory ();
Retrieves the current directory of the drive specified by the drive component and stores the result in the
path component of the filename.

bool QueryCurrentDriveDirectory ():

Retrieves the current directory and stores the result in the drive-path component of the filename.

bool Create ();

Creates a directory.

bool Exists ();

Returns true if the directory exists.

bool Move (const char * pc_new);

Moves (renames) the directory either in the same directory or across directories. On success the own
filename (base class ct_FileName) is changed as well.

bool Delete ();

Deletes an empty directory.

3.3.3 Directory Scan (tuning/dirscan.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_DirScan is derived from ct_Directory. The drive and path components of the filename
determine the directory to scan. The name and extension components are used for input and output
data. Before scanning a directory, these components contain the search pattern. While scanning a
directory, these components contain the name and extension of the current directory entry.

Note that changing the contents of a directory while scanning it can lead to unpredictable results. It is
recommended to cache the results of a directory scan in a data stucture before changing the contents
of the directory.

The class ct_DirScan can also be used to retrieve information about a single file or directory. If the search
pattern does not contain any wildcard characters ('*' or '?'), multiple information about a directory
entry are retrieved by a single function call. The FindOnce methods consist of three steps: abort an active
scan, assign a new search pattern and start a new scan.

Base Classes

ct Object (see above 'Abstract Object')
ct_String (see above 'Polymorphic String')
ct_FileName (see above 'Filename’)

ct Directory (see above 'Directory’)

Data Types, Constants
typedef unsigned t FileAttributes;

const t FileAttributes co AttrArchive = 0x01;
const t _FileAttributes co AttrDirectory = 0x02;
const t_FileAttributes co AttrHidden = 0x04;
const t _FileAttributes co AttrReadOnly = 0x08;

Spirick Tuning Reference Manual Page 133

const t _FileAttributes co AttrSystem = 0x10;

Values of the integer type t FileAttributes can combine multiple attribute flags via an OR operation.

Class Declaration

class ct DirScan: public ct Directory

{
public:

ct DirScan (O);
ct_DirScan (const char * pc_init);
ct_DirScan (const ct_FileName & co_init);
~ct _DirScan ();

ct _DirScan & operator = (const char * pc_asgn);

ct DirScan & operator = (const ct _FileName & co_asgn);

bool FindOnce O);

bool FindOnce (const char * pc_find);

bool FindOnce (const ct_FileName & co find);

bool FindOncePath ();

bool FindOncePath (const ct_FileName & co find);

bool FindFirst O);

bool FindFirstFile ();

bool FindFirstDirectory ();:

booT FindNext ();

bool FindNextFile ();

bool FindNextDirectory ();

void AbortFind ();

bool Found ();

t MicroTime GetCreationTime () const;

t MicroTime GetLastAccessTime () const:

t MicroTime GetLastWriteTime () const;

t FileSize GetSize () const;

t FileAttributes GetAttributes () const:

bool IsArchive () const;

bool IsDirectory () const;

bool IsHidden () const;

bool IsReadOnly () const;

bool [sSystem () const;

b

Methods

ct DirScan ();

Initializes an empty dirscan object.

ct DirScan (const char * pc_init);

Initializes a dirscan object by calling the method ct_FileName: :AssignAsName.

ct_DirScan (const ct_FileName & co_init):

Initializes a dirscan object by calling the copy constructor of ct_FileName.

~ct DirScan ();

Releases all temporary data.

ct_DirScan & operator = (const char * pc_asgn);

Calls ct_FileName: :AssignAsName (pc_asgn).

Spirick Tuning Reference Manual Page 134

ct DirScan & operator = (const ct FileName & co_asgn);

Assigns a new filename.

bool FindOnce ();

Aborts an active scan and starts a new scan using the current filename.

bool FindOnce (const char * pc_find);

Aborts an active scan, calls ct_FileName::AssignAsName (pc_find) and starts a new scan.

bool FindOnce (const ct FileName & co find);

Aborts an active scan, calls ct_FileName::AssignAsName (co_find) and starts a new scan.

bool FindOncePath ():

Aborts an active scan, calls ct_FileName::AssignAsName (GetPureDrivePath ()) and starts a new scan, i.e.
the method retrieves information about the drive-path component.

bool FindOncePath (const ct_FileName & co find);

Aborts an active scan, calls ct_FileName::AssignAsName (co_find. GetPureDrivePath ()) and starts a new
scan, i.e. the method retrieves information about the drive-path component of co_find.

bool FindFirst ();

Starts a new scan (files and directories) using the current filename and retrieves information about the
first directory entry.

bool FindFirstFile ():

Starts a new scan (files only) using the current filename and retrieves information about the first
directory entry.

bool FindFirstDirectory ();

Starts a new scan (directories only) using the current filename and retrieves information about the first
directory entry.

bool FindNext ();

Iterates to the next directory entry (files and directories) and retrieves information about it.

bool FindNextFile ();

Iterates to the next directory entry (files only) and retrieves information about it.

bool FindNextDirectory ():

Iterates to the next directory entry (directories only) and retrieves information about it.

void AbortFind ();

Aborts an active scan and releases all temporary data.

bool Found ();

Returns true if the previous call of FindFirst or FindNext has returned true.

t MicroTime GetCreationTime () const;

Returns the creation time of the current directory entry in UTC (see above 'Time and Date').

t MicroTime GetLastAccessTime () const;

Returns the last access time of the current directory entry in UTC (see above 'Time and Date').

Spirick Tuning Reference Manual Page 135

t MicroTime GetLastWriteTime () const;

Returns the last write time of the current directory entry in UTC (see above 'Time and Date').

t FileSize GetSize () const;

Returns the size of the current directory entry.

t FileAttributes GetAttributes () const;

bool
bool
bool
bool
bool

Returns the attributes of the current directory entry.

IsArchive () const;
IsDirectory () const;
IsHidden () const;
IsReadOnly () const;
IsSystem () const;

Returns true if a specific flag is set.

Search Patterns

The class ct_DirScan is derived from ct Directory. The drive and path components of the filename
determine the directory to scan. The method ct Directory::Exists can be used to check if the directory
exists.

ct _DirScan co_dirScan;
co_dirScan. SetDrivePath ("c:\\spirick\\tuning");

if (co_dirScan. Exists ())
/]

The name and extension components are used for input and output data. Before scanning a directory,
these components contain the search pattern.

co_dirScan. SetNameExt ("*");
The search pattern "*" starts an unfiltered directory scan.
co_dirScan. SetNameExt ("*.7pp");

MS Windows only: The search pattern can be a combination of literal and wildcard characters ('*' or
7).

co_dirScan. SetNameExt ("dirscan.hpp");

If the search pattern is a unique name of a file or directory, multiple information about the directory
entry are retrieved by a single function call.

Sample Code

The following sample code demonstrates an unfiltered directory scan.

ct DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirst ();
co_dirScan. Found ();
co_dirScan. FindNext ())

{
/..

}

Scan files only:

Spirick Tuning Reference Manual Page 136

ct DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstFile ();
co_dirScan. Found ();
co_dirScan. FindNextFile ())

{
/]

}

Scan directories only:

ct _DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstDirectory ();
co_dirScan. Found ();
co_dirScan. FindNextDirectory ())

{
/.

3.4 Additional Utilities

3.4.1 Time and Date (tuning/timedate.hpp)

The class ct_TimeDate provides an object oriented interface for the global time and date functions (see
above 'sys/ctimedate.hpp'). Time values are expressed in microseconds since 1/1/1970. The current
time can be queried in UTC and local time.

Class Declaration

class ct _TimeDate

{
public:
ct_TimeDate ();
ct_TimeDate (t MicroTime i_time);
void Clear ():
t MicroTime GetTime () const;
void SetTime (t_MicroTime i _time);
void QueryUTCTime ();
void QuerylLocalTime ();
inTine unsigned GetYear () const;
inTine unsigned GetMonth () const;
inline unsigned GetDay () const;
inTine unsigned GetDayOfWeek () const;
inTine unsigned GetHour () const;
inline unsigned GetMinute () const;
inline unsigned GetSecond () const;
inline unsigned GetMicroSecond () const;
inline void SetYear (unsigned u):
inline void SetMonth (unsigned u);
inline void SetDay (unsigned u);
inTine void SetDayOfWeek (unsigned u);
inline void SetHour (unsigned u);
inTline void SetMinute (unsigned u);
inline void SetSecond (unsigned u);

Spirick Tuning Reference Manual Page 137

inline void SetMicroSecond (unsigned u);

inTine bool operator == (const ct TimeDate & co_td) const;
inline bool operator != (const ct TimeDate & co _td) const;
inTine bool operator < (const ct _TimeDate & co_td) const;
inline bool operator <= (const ct TimeDate & co _td) const;
inTine bool operator > (const ct TimeDate & co_td) const;
inTine bool operator >= (const ct TimeDate & co_td) const;
b
Methods

ct TimeDate ();

Initializes an empty time-date object.

ct_TimeDate (t_MicroTime i_time);

Converts a microsecond value to time-date components.

void Clear ():

Clears the time-date object.

t MicroTime GetTime () const;

Converts time-date components to a microsecond value.

void SetTime (t MicroTime i_time);

Converts a microsecond value to time-date components.

void QueryUTCTime ();

Retrieves the current time, as reported by the system clock, in UTC.

void QuerylLocalTime ();

Retrieves the current time, as reported by the system clock, in the local time zone.

unsigned GetYear () const;
unsigned GetMonth () const;
unsigned GetDay () const;
unsigned GetDayOfWeek () const;
unsigned GetHour () const;
unsigned GetMinute () const;:
unsigned GetSecond () const;
unsigned GetMicroSecond () const;

These methods return a specific component as an unsigned integer value.

void SetYear (unsigned u);

void SetMonth (unsigned u);

void SetDay (unsigned u);

void SetDayOfWeek (unsigned u);:
void SetHour (unsigned u):

void SetMinute (unsigned u):

void SetSecond (unsigned u);

void SetMicroSecond (unsigned u):

These methods set a specific component to an unsigned integer value.

Spirick Tuning Reference Manual Page 138

bool operator == (const ct_TimeDate & co_td) const;
bool operator != (const ct _TimeDate & co td) const;
bool operator < (const ct_TimeDate & co _td) const;
&
&

bool operator <= (const ct_TimeDate & co _td) const;
bool operator > (const ct_TimeDate & co_td) const;
bool operator >= (const ct_TimeDate & co_td) const;

These methods compare two time-date objects.

3.4.2 MD5 Sum (tuning/md5.hpp)

The class ct_MD5 can be used for a single MD5 sum calculation. The source data can be located in a
single memory block, or they can consist of several parts. The results of the calculation can be retrieved
in a textual and a binary format.

Class Declaration
typedef t UInt8 t MD5Result [161];

class ct_MD5

{
public:
ct MD5 ();
ct MD5 (const t MD5Result & ac_init);
ct MD5 (const void * pv_data, t UInt u_Ten);
void Update (const void * pv_data, t UInt u_Ten);
void Finalize ();
const t MD5Result & GetResult () const;
const char * GetResultStr ();
bool operator == (const ct MD5 & co_comp) const;
b
Methods
ct MD5 ();

Initializes an empty MD5 object.

ct MD5 (const t MD5Result & ac_init);
Copies the MD5 results from another MD5 object.

ct MD5 (const void * pv_data, t UInt u_len);

Initializes a MD5 object and calls the methods Update and Finalize.

void Update (const void * pv_data. t UInt u_len);
Processes a single part of the source data. Location and length of the data block are determined by
pv_data and u_Ten.

void Finalize ();

Stops the MD5 sum calculation. Afterwards the results can be retrieved.

const t MD5Result & GetResult () const;

Returns the result in a binary format.

const char * GetResultStr ();

Returns the result in a textual format. The string consists of 32 lower case hexadecimal characters and
a terminating null character.

Spirick Tuning Reference Manual Page 139

bool operator == (const ct MD5 & co_comp) const;

Compares the results of two MD5 objects.

3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

The class ct_UUID provides an interface to create and process Universally Unique Identifiers.

Class Declaration
typedef t UInt8 t _UUID [16];

class ct_UUID

{
public:
ct_WID (O);
ct UUID (const ct UUID & co init);
ct_UUID (const t UUID & ao_init);
ct_UUID & operator = (const ct UUID & co_asgn):
bool IsEmpty () const:
t UInt GetHash () const;
const t _UUID & GetUUID () const;
void Clear ():
bool Create ();
bool ToStr (char * pc_dst, t UInt u_len, bool b upperCase) const;
bool FromStr (const char * pc_src, t UInt u_len);
bool operator == (const ct UUID & co_comp) const;
bool operator != (const ct UUID & co_comp) const;
b
Methods
ct UWUID ();

Initializes an empty UUID object.

ct UUID (const ct UUID & co init);
Copies the data from another UUID object.

ct UWID (const t UUID & ao_init);
Copies the binary UUID data.

ct_UUID & operator = (const ct_UUID & co_asgn);
Copies the data from another UUID object.

bool IsEmpty () const;
Returns true if the UUID object is empty.

t UInt GetHash () const;

Returns a hash value.

const t UUID & GetUUID () const;

Returns a reference to the binary UUID data.

Spirick Tuning Reference Manual Page 140

void Clear ();
Clears the UUID object.

bool Create ();

Creates a new Universally Unique Identifier.

bool ToStr (char * pc_dst, t UInt u_Ten, bool b_upperCase) const;
Converts the binary UUID to a string and writes the result to the buffer (pc_dst, u_len) (u_len >= 36). The

formatted string consists of 36 characters without a terminating null character. If b_upperCase equals true
upper case characters are used.

bool FromStr (const char * pc_src, t UInt u_len);
Converts a formatted string to a binary UUID. The first 36 characters of the buffer (pc_src, u_Ten) (u_len
>= 36) are interpreted as a textual UUID.

bool operator == (const ct_UUID & co_comp) const;

bool operator != (const ct UUID & co _comp) const;

Compare two UUID objects.

Spirick Tuning Reference Manual Page 141

4 DESIGN DIAGRAMS

4.1 Notation

The following sections contain some design diagrams describing the interaction of several components
of the Spirick Tuning library. The diagrams are based on the 'Unified Modeling Language' (UML). The
following diagram shows some important parts of UML class diagrams.

BaseClass
Attribute
Method

T

DerivedClass o ——
Value_of_Part1 1 1
Reference_to_Part2

Call_AssociatedClass| C Part2

*

Part1

1

AssociatedClass

Classes are represented by rectangles which show the name of the class and optionally the attributes
and methods. The following relationships can be used:

- Inheritance
- Composition
- Aggregation
- Association

717

Some connectors may include cardinality at each end.

Spirick Tuning Reference Manual Page 142

4.2

Polymorphic Class Hierarchy

The following diagram shows all classes which inherit from the abstract base class ct_0Object.

ct_Object
ct_Collection ct_WString ct_String
ct_Array ct_SortedArray ct_DList ct_BlockDList ct_RefCollection ct_FileName

i

ct_RefDList

ct_BlockRefDList

ct_File

ct_Directory

ct_DirScan

Spirick Tuning

Reference Manual Page 143

4.3 An Array Container

The following (partially simplified) diagram shows all classes which are used to implement an array
container. The container instance was defined by the following sample code:

#include "tuning/chn/array.h"
class ct Any { /* ... */ };
gct Chn_Array <ct Any> co AnyArray;

The array container allocates memory using the store class ct_ChnStore. The wrapper class ct_Chn Store
maps methods of the global store object to static class methods. The abbreviation _ determines the
nested size type t Ulnt.

The class ct_Chn Block is a predefined instance of the block template gct Block using the wrapper class
ct_Chn Store. The class template gct_ItemBlock is an extension of the common block interface. The helper
templates gct_FixItemBlockBase and gct FixItemBlock are used for compile time configuration of the item
size.

The container template gct_Array is instantiated using the parameters ct_Any and gct FixItemBlock

<t _block, sizeof (gct ArrayNode <ct Any>)>. The helper template gct ArrayNode is used to construct and
destruct the contained objects. The helper template gct FixItemArray passes the size of an object to the
template gct FixItemBlock.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct_Chn_Array is a predefined shortcut for gct_ExtContainer <gct FixItemArray <t obj, ct Chn Block> >.

Spirick Tuning Reference Manual Page 144

t_block : class

get_Block

#o_Pos: typename t_staticStore::t_Position gcthixliemBlockBase

#o_Size: t_Size

+o_FixSize: t_Size
+0_SizeMax: t_Size

<<create>>-gct_Block()
<<create>>-gct_Block(co_init: gct_Block) +SetFixSize(o_fs: t_Size): void
<<destroy>>-gct_Block()
<<CppOperator>>+=(co_asgn: gct_Block): gct_Block
+Swap(co_swap: gct_Block): void

+GetByteSize(): t_Size

+SetByteSize(o_newSize: t_Size): void

+GetAddr(): void

+GetStore(): typename t_staticStore::t_Store

t_block : class

gct_ltemBlock

-GetRawAddr_(o_pos: t_Size): char
+GetFixSize(): t_Size
+GetltemSize(): t_Size
+SetltemSize(o_size: t_Size): void
+IncltemSize1(): void
+DecltemSize1(): void

ct_Chn_Store

+Swap(: ct_Chn_Store): void +IncltemSize(o_inc: t_Size): void

+MaxAIIoc()_: t_Ulnt +DecltemSize(o_dec: t_Size): woid

+store|nfos{ze(): t Ulnt +GetltemAddr(o_pos: t_Size): oid

+Alloc(: t_Size): t_Position +Insertltems(o_pos: t_Size, o_count: t_Size): void
+Realloc(: t_Position, : t_Size): t_Position +Deleteltems(o_pos: t_Size, o_count: t_Size): void

+Free(: t_Position): void +GetDefaultPageSize(): t_Size

+AddrOf(o_pos: t_Position): void +AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

+PosOf(pv_adr: wid): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(: t_Position): t_Size
+CanFreeAll(): bool

+FreeAll(): void

+GetStore(): ct_ChnStore

*
1

ct_ChnStore
-aso_FreeChains: st_FreeChain
-o_Entries: t_Uint
-o_Size: t_Ulnt
-b_InFree: bool gct_Array
<<CppOperator>>-=(: ct_ChnStore): ct_ChnStore
<<create>>-ct_ChnStore() <<create>>-gct_Array()
<<destroy>>-ct_ChnStore() <<create>>-gct_Array(co_init: gct_Array)
+Swap(co_swap: ct_ChnStore): void <<destroy>>-gct_Array()
<<CppOperator>>+new(u_size: size_t): void <<CppOperator>>+=(co_asgn: gct_Amray): gct_Array
<<CppOperator>>+delete(pv: void): void +IsEmpty(): bool
+MaxAlloc(): t_Uint +GetLen(): t_Length
+StorelnfoSize(): t_Uint +First(): t_Position
+Alloc(o_size: t_Size): t_Position +Last(): t_Position
+Realloc(o_pos: t_P n, o_size: t_Size): t_Position +Next(o_pos: t_Position): t_Position
+Free(o_pos: t_Position): void +Prev(o_pos: t_Position): t_Position
+AddrOf(o_pos: t_Position): void +Nth(u_idx: t_Length): t_Position
+PosOf(pv_adr: woid): t_Position +GetObj(o_pos: t_Position): t_Object
+SizeOf(o_pos: t_Position): t_Size +AddObj(po_obj: t_Object): t_Position
+RoundedSizeOf(o_pos: t_Position): t_Size +AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
+CanFreeAll(): bool +AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
+FreeAll(): void +AppendObj(po_obj: t_Object, o_count: t_Length): void
+GetEntries(): t_Ulnt +TruncateObj(o_count: t_Length): void
+GetSize(): t_Ulnt +DelObj(o_pos: t_Position): t_Position
+QueryAllocEntries(): t_Ulnt +DelAll(): void
+QueryAllocSize(): t_Ulnt +FreeObj(o_pos: t_Position): t_Position
+QueryFreeEntries(): t_Ulnt +FreeAll(): void
+QueryFreeSize(): t_Uint +SetPageSize(o_size: t_Size): wid
+FreeUnused(): void

it _obj: Class

gct_ArrayNode T :
gct_FixltemArray
+0_Obj: t_obj

<<create>>-gct_ArrayNode()
<<create>>-gct_ArrayNode(o_obj: t_obj)
<<CppOperator>>+new(: size_t, pv: wid): void
<<CppOperator>>+delete(: woid, : woid): void
<<CppOperator>>+delete(: void): void

gct_ExtContainer

1
1 +GetFirstObj(): t_Object
+GetLastObj(): t_Object
ct_Any +GetNextObj(o_pos: t_Position): t_Object

+GetPrevObj(o_pos: t_Position): t_Object

+GetNthObj(u_idx: t_Length): t_Object
+AddObjBeforeFirst(po_obj: t_Object): t_Position
+AddObjAfterLast(po_obj: t_Object): t_Position
+AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
+AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
+GetNewObj(po_obj: t_Object): t_Object
+GetNewFirstObj(po_obj: t_Object): t_Object
+GetNewlastObj(po_obj: t_Object): t_Object
+GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
+GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
+DelFirstObj(): t_Position
+DelLastODbj(): t_Position
+DelNextObj(o_pos: t_Position): t_Position
+DelPrevObj(o_pos: t_Position): t_Position
+DelNthObj(u_idx: t_Length): t_Position
+FreeFirstObj(): t_Position
+FreelLastObj(): t_Position
+FreeNextObj(o_pos: t_Position): t_Position
+FreePrevObj(o_pos: t_Position): t_Position
+FreeNthObj(u_idx: t_Length): t_Position

Spirick Tuning Reference Manual Page 145

4.4 A Pointer Array Container

The following (partially simplified) diagram shows all classes which are used to implement a pointer
array container. The container instance was defined by the following sample code:

#include "tuning/chn/ptrarray.h"
class ct Any { /* ... */ };
gct Chn_PtrArray <ct Any> co AnyPtrArray;

The pointer array container allocates memory using the store class ct _ChnStore. The wrapper class
ct_Chn_Store maps methods of the global store object to static class methods. The abbreviation _

determines the nested size type t _Ulnt.

The class ct_Chn Block is a predefined instance of the block template gct Block using the wrapper class

ct_Chn Store. The class template gct_ItemBlock is an extension of the common block interface. The helper

templates gct_FixItemBlockBase and gct FixItemBlock are used for compile time configuration of the item
size.

The container template gct_Array is instantiated using the parameters void * and gct_FixItemBlock

<t _block, sizeof (gct ArrayNode <void *>)>. The helper template gct ArrayNode is used to construct and
destruct the contained pointers. The helper template gct FixItemArray passes the size of a pointer to the
template gct FixItemBlock.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template

gct_Chn_Array is a predefined shortcut for gct_ExtContainer <gct FixItemArray <t obj, ct Chn Block> >.

The class template gct_CompContainer implements some count, search and conditional methods. The class
template gct_PtrContainer provides a comfortable interface for pointer containers. It maps many methods

of the basic, extended and comp-container interface and provides some additional methods. The
template gct_Chn_PtrArray is a predefined shortcut for gct PtrContainer <ct_Any, gct _Chn_Array <void *> >.

Spirick Tuning Reference Manual Page 146

gct_Block

get_Block(co_init: gct_Block)

gct_Block()

=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void

GetStore(): typename t_staticStore::t_Store

ct_Chn_Store

Swap(: ct_Chn_Store): woid
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf{(: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetStore(): ct_ChnStore

1

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_Ulnt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt

QueryAllocEntries(): t_Ulnt
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_Ulnt

FreeUnused(): void

obj

0o_Pos: typename t_staticStore::t_Position
o_Size: t_Size m< o_FixSize: t_Size
gct_Block() o_SizeMax: t_Size

gct_Fixltem

SetFixSize(o_fs: t_Size): void

gct_ltemBlock

class
gct_Chn_Array

gct_CompContainer

GetRawAddr_(o_pos: t_Size): char

GetFixSize(): t_Size

GetltemSize(): t_Size

SetltemSize(o_size: t_Size): void

IncltemSize1(): void

DecltemSize1(): woid

IncltemSize(o_inc: t_Size): void
DecltemSize(o_dec: t_Size): woid
GetltemAddr(o_pos: t_Size): void
Insertitems(o_pos: t_Size, o_count: t_Size): void
Deleteltems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

ContainsObj(po_obj: t_Object): bool

CountObjs(po_obj: t_Object): t_Length

SearchFirstObj(po_obj: t_Object): t_Position
SearchLastObj(po_obj: t_Object): t_Position
SearchNextObj(o_pos: t_Position, po_obj: t_Object): t_Position
SearchPrevObj(o_pos: t_Position, po_obj: t_Object): t_Position
GetFirstEqualObj(po_obj: t_Object): t_Object
GetLastEqualObj(po_obj: t_Object): t_Object
AddObjCond(po_obj: t_Object): t_Position
AddObjBeforeFirstCond(po_obj: t_Object): t_Position
AddObjAfterLastCond(po_obj: t_Object): t_Position
DelFirstEqualObj(po_obj: t_Object): t_Position
DelLastEqualObj(po_obj: t_Object): t_Position
DelFirstEqualObjCond(po_obj: t_Object): t_Position
DelLastEqualObjCond(po_obj: t_Object): t_Position

gct_Array

Node(o_pos: t_Position): gct_ArrayNode <t_obj>
CopyFrom(co_copy: gct_Array): void

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_Array()

gct_Array(co_init: gct_Array)

gct_Array()

=(co_asgn: gct_Array): gct_Array

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position):
Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddObj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

SetPageSize(o_size: t_Size): wid

gct_ArrayNode

©0_Obj: t_obj

get_ArrayNode()
gct_ArrayNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

gct_ExtContainer

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthODbj(u_idx: t_Length): t_Object

AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewlastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_obj : class

gct_PtrContainer

get_PtrContainer()

GetPtr(o_pos: t_Position): t_obj

GetFirstPtr(): t_obj

GetLastPtr(): t_obj

GetNextPtr(o_pos: t_Position): t_obj

GetPrevPtr(o_pos: t_Position): t_obj

GetNthPtr(u_idx: t_Length): t_obj

AddPtr(po_obj: t_obj): t_Position

AddPtrBefore(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrAfter(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrBeforeFirst(po_obj: t_obj): t_Position

t_obj): t_Position

t_Length, po_obj: t_obj): t_Position
AddPtrAfterNth(u_idx: t_Length, po_obj: t_obj): t_Position
DelPtr(o_pos: t_Position): t_Position

DelFirstPtr(): t_Position

DelLastPtr(): t_Position

DelNextPtr(o_pos: t_Position): t_Position
DelPrevPtr(o_pos: t_Position): t_Position
DelNthPtr(u_idx: t_Length): t_Position

DelAllPtr(): void

DelPtrAndObj(o_pos: t_Position): t_Position
DelFirstPtrAndObj(): t_Position

DelLastPtrAndODbj(): t_Position

DelNextPtrAndObj(o_pos: t_Position): t_Position
DelPrevPtrAndObj(o_pos: t_Position): t_Position
t_Length): t_Position

DelAlIPtrAndObj(): void

SearchFirstPtr(po_obj!
SearchLastPtr(po_obj:
SearchNextPtr(o_pos: t_Position
SearchPrevPtr(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrCond(po_obj: t_obj): t_Position
AddPtrBeforeFirstCond(po_obj: t_obj): t_Position
AddPtrAfterLastCond(po_obj: t_obj): t_Position
DelFirstEqualPtr(po_obj: t_obj): t_Position
DelLastEqualPtr(po_obj: t_obj): t_Position
DelFirstEqualPtrCond(po_obj: t_obj): t_Position
DelLastEqualPtrCond(po_ol Position
DelFirstEqualPtrAndObj(po_ol j): t_Position
DelLastEqualPtrAndObj(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObjCond(po_obj: t_obj): t_Position
DelLastEqualPtrAndObjCond(po_obj: t_obj): t_Position

Spirick Tuning Reference Manual

Page 147

4.5 A List Container

The following (partially simplified) diagram shows all classes which are used to implement a list
container. The container instance was defined by the following sample code:

#include "tuning/chn/dlist.h"
class ct Any { /* ... */ };
gct_Chn32DList <ct Any> co_AnyDList;

The list container allocates memory using the store class ct_ChnStore. The wrapper class ct_Chn32Store
maps methods of the global store object to static class methods. The abbreviation 32 determines the
nested size type t UInt32.

The container template gct DList is instantiated using the parameters ct_Any and ct Chn32Store. The list
class contains a data member of type t _store. The helper template gct DListNode is used to construct and
destruct the contained objects. Every list node contains references (position values) to the direct
neighbors.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct Chn32DList is a predefined shortcut for gct_ExtContainer <gct DList <ct Any, ct Chn32Store> >.

Spirick Tuning Reference Manual Page 148

ct_Chn32Store

Swap(: ct_Chn32Store): void

MaxAlloc(): t_UlInt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void

AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size 1
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

*

1

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_UlInt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): woid
new(u_size: size_t): woid

delete(pv: wid): void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt
QueryAllocEntries(): t_Ulint
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_UInt
FreeUnused(): woid

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
get_DList()

get_DList(co_init: gct_DList)

gct_DList()

=(co_asgn: gct_DList): gct_DList

Swap(co_swap: gct_DList): void

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position): t_Position

Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddObj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

GetStore(): t_store

gct_ExtContainer

gct_DListNode

o_Obj: t_obj
o_Prev. t_ptr
o_Next: t_ptr

get_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: woid): void

{t_container : class |

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewODbj(po_obj: t_Object): t_Object

GetNewrFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewODbjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

DelNthObj(u_idx: t_Length): t_Position

FreeFirstObj(): t_Position

FreeLastObj(): t_Position

FreeNextObj(o_pos: t_Position): t_Position

FreePrevObj(o_pos: t_Position): t_Position

FreeNthObj(u_idx: t_Length): t_Position

Spirick Tuning Reference Manual Page 149

4.6 A Block List Container

The following (partially simplified) diagram shows all classes which are used to implement a block list
container. The container instance was defined by the following sample code:

#include "tuning/chn/blockdlist.h"
class ct Any { /* ... */ };
gct Chn32BTlockDList <ct Any> co AnyBlockDList;

The block list container allocates memory using the store class ct_ChnStore. The wrapper class
ct_Chn32Store maps methods of the global store object to static class methods. The abbreviation 32
determines the nested size type t UInt32.

The class ct_Chn32Block is a predefined instance of the block template gct Block using the wrapper class
ct_Chn32Store. The class template gct ItemBlock is an extension of the common block interface. The
helper templates gct VarlItemBlockBase and gct VarItemBlock are used for runtime configuration of the item
size.

A block store uses an item block for compact storage of smaller, equal-sized memory blocks. The store
template gct _BlockStore is instantiated using the parameters gct VarItemBlock <ct Chn32Block> and

gct _CharBlock <ct_Chn32Block, char>. The template ct Chn32BlockStore is a predefined shortcut for

gct BlockStore <gct Var..., gct Char...>.

The container template gct DList is instantiated using the parameters ct Any and ct_Chn32BlockStore. The
list class contains a data member of type t _store. The helper template gct DListNode is used to construct
and destruct the contained objects. Every list node contains references (position values) to the direct
neighbors.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct _Chn32BlockDList is a predefined shortcut for gct ExtContainer <gct DList <ct Any, ct Chn32BlockStore> >.

Spirick Tuning Reference Manual Page 150

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_UInt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: : void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt
QueryAllocEntries(): t_Ulnt
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_Ulnt
FreeUnused(): woid

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: woid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetStore(): ct_ChnStore

staticStore : class
gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()

get_Block(co_init: gct_Block)

gct_Block()

=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void

GetStore(): typename t_staticStore::t_Store

ct_Chn32Block

>“

gct_VarltemBlockBase

t_obj : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
get_DListNode(o_obj: t_obj)
new(: size_t, pv. void): void
delete(: woid, : void): void
delete(: void): void

gct_ltemBlock

GetRawAddr_(o_pos: t_Size): char

GetFixSize(): t_Size

GetltemSize(): t_Size

SetltemSize(o_size: t_Size): wid

IncltemSize1(): void

DecltemSize1(): void

IncltemSize(o_inc: t_Size): void
DecltemSize(o_dec: t_Size): void
GetltemAddr(o_pos: t_Size): void
Insertitems(o_pos: t_Size, o_count: t_Size): void
Deleteltems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

o_FixSize: t_Size
o_SizeMax: t_Size

get_VarltemBlockBase()
SetFixSize(o_fs: t_Size): woid

t_itemBlock : class
t_charBlock : class

gct_BIockStore"

so_Data: st_Data

ldxAddrOf(o_pos: t_Position): t_Position
FreePlain(o_pos: t_Position): void
FreeSort(o_pos: t_Position): void
gct_BlockStore()

Swap(co_swap: gct_BlockStore): void
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

SetSortedFree(b: bool): void
SetPageSize(o_size: t_Size): void
Lastldx(): t_Position

HasFree(): bool

FreeUnused(): void

ct_Chn32BlockStore

t_obj : class

get_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): woid

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
get_DList()

get_DList(co_init: gct_DList)

get_DList()

=(co_asgn: gct_DList): gct_DList

Swap(co_swap: gct_DList): void

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position): t_Position

Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddODbj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

GetStore(): t_store

gct_ExtContainer

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object

GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

DelINthObj(u_idx: t_Length): t_Position

FreeFirstObj(): t_Position

FreeLastObj(): t_Position

FreeNextObj(o_pos: t_Position): t_Position

FreePrevObj(o_pos: t_Position): t_Position

FreeNthObj(u_idx: t_Length): t_Position

gct_Chn32BlockD!

Spirick Tuning

Reference Manual

Page 151

5 INSTALLATION

5.1 Installation

5.1.1 Available Platforms

The Spirick Tuning library is currently available for the following operating systems: MS Windows XP, MS
Windows 7, MS Windows 10 and Linux (x86/x86-64, kernel 2.6.32 to 6.2.0). The library can be used in
32-bit and 64-bit environments, in single-threaded or multi-threaded mode. The source code is
developed and tested for the following compilers: MS Visual C++ 8.0 (2005) to 17.0 (2022) and g+ +
4.4.5to0 12.2.0.

5.1.2 Dependencies

The Spirick Tuning library uses the compiler runtime system and OS dependent low-level functions. On
Linux platforms the library Pthreads is used for multithreading. There are no dependencies or
interactions to other libraries.

5.1.3 Makefiles

The source code of the Spirick Tuning library can be integrated in any existing build system. Alternatively
the Spirick makefiles can be used. These makefiles automatically detect the make utility (MS Windows:
nmake, Linux: gmake). The Spirick makefiles use the following environment variables:

TL_PROJECT TARGETDIR: The compiler and linker target directory.

TL_COMPILER: A shortcut for the compiler version, e.g. "msc192164".

TL_RELEASE: Switch between debug and release build.

MSDEVDIR: MS Windows only: Detect the MSVC compiler.

TL_BUILD DLL: MSVC only: Switch between declspec (dl1export) and declspec (d11import).

The Spirick makefiles use the sd utility (Spirick Source Dependencies). The source code of the sd utility
is included in the Spirick Tuning library. Bootstrap method: If the sd executable is not available, use an
empty sd script file (MS Windows: sd.bat, Linux: sd.sh).

5.1.4 Global Objects

Each global store object (see above 'Global Stores') has its own global access function. The global

object is created in the first call of the access function. This technique ensures safe access to store
objects from constructors of global C++ objects. A global store object may be created directly by a
global Create function.

Global store objects are not destroyed automatically during program termination. This technique ensures
safe access to store objects from destructors of global C++ objects. The destruction of global store
objects is not necessary. They manage raw memory blocks, and this memory is released by the OS
automatically. A global store object may be destroyed directly by a global Delete function.

Spirick Tuning Reference Manual Page 152

Note that a heap walker may report the global store objects as memory leaks at the end of the program.
This problem can be avoided by explicitly deleting these objects. Please ensure that a global store object
is not used after deleting it.

The file "tuning/sys/cprocess.cpp’ contains access functions for two global mutex objects (see above
"Thread Mutex' and 'Process Mutex'). These objects are created in the first call of the access functions
or before starting the first thread. At the end of the program the global mutex objects can be destroyed
by calling a global Delete function.

5.1.5 Exception Handling

Exception handling can be enabled or disabled by compiler options. In some C++ projects exception
handling is disabled to improve performance. The Spirick Tuning library can be used with or without
exception handling. All functions return true on success and false or an error code on failure, no
exceptions are thrown.

While working with containers, exceptions may occur inside of constructors and destructors of
contained objects. Spirick container classes contain minimal exception handlers. These handlers ensure
the consistency of the container object and pass the exception unchanged to a higher-level handler (see
above 'Container Interface').

Spirick Tuning Reference Manual Page 153

Index

AbortFind......cooiiii 135
ACUITE. .ot 103, 107
AddKeyAndValPtr........ccoooiviiiiiiiiiiieens 79
AddKeyAndValPtrCond...........ccovvevieiiinnnns 79
AddKeyAndValue..........cooeeiiiiiiiiiiiieiinnns 76
AddKeyAndValueCond............ccevvviniinnnnnn. 76
AddODj. . 44
AddObjATtEr. .o 44
AddObjAfterLast........ccocviviiiiii i, 48
AddObjAfterLastCond.........cccvvvieinviinnnnnnn. 63
AddODbjAfterNth........cccoiiii e 48
AddObjBefore.......ccovviiiiiiiii 44
AddObjBeforeFirst.........ccooviiiiiiiiiiaas 48
AddObjBeforeFirstCond............ccoeevieinnnnnn. 63
AddObjBeforeNth..........cooviiiiiiiiiinn, 48
AddODbjCond......cciviiiiii e 63
AdAPtr. . 67
AddPtrAfter...co e 67
AddPtrAfterLast........ccoviiiiiiiiiiii e 67
AddPtrAfterLastCond...........cooeviviiiiiiinennnn. 69
AddPtrAfterNth........ccoooiii 67
AddPtrBefore.......ccooviiiiiiiiii 67
AddPtrBeforeFirst........cccoooviiiiiiiiiiiens 67
AddPtrBeforeFirstCond............cccoveviinnnn 69
AddPtrBeforeNth........ccooviiiiiiiiiiiinenns 67
AddPtrCond.......cooiiiiiiiiiii e 69
AddRefAfterLastCond...........ccovviiiiiinnnnnnn. 73
AddRefBeforeFirstCond............ccocvivvinennnn. 73
AddRefCond......ccoviiiiiiiiiiiic e 73
AddrOf. . 11
AlignPageSize............ccooviiieiinnn. 26, 28, 30
AlOC. e 11
AlloCData. ..o ieie s 31, 39
AlIOCPr e 31
APPENd. ..o 118
AppendChars........cccviiiiiiiiiiie e 26
AppendF.o 120
Appendltems.......ccoooiiiiiii e 28
AppendODbj.....couiiii 44
AppendPath.........cocoiiiiiiiiii 127
ARRAY DCLS.....coiiiiiiiii e, 51
ASSIGN. e 118
AssignAsName.........coooviiiiiiiiiiiiie 125
AssignAsPath................co 125
AssignChars.........coooiiiiiiiii 26
AsSignF. ..o 120
Before....oooeiiiiii 55
BLOCK DCLS....ceiiiiiiiiiiiieee e 31
BLOCK DLIST DCLS.....coviviiiiiiiiiiieinienns 59
BLOCK STORE DCLS.....cccovviiiieiiieenene 33
BLOCKPTR DLIST DCLS......occvvviiiiiniennns 84
BLOCKREF DLIST DCLS......ccceivivinieenenen 61
BLOCKREF_STORE DCLS.........cveviiiienenn. 37
BLOCKREFPTR DLIST DCLS.........cevvenenee. 85

CanFreeAll.......ccooiviiiiiiii e 11
Clear .o 118, 138, 141
Close.....ocovviiiiiiiiinns 105, 107, 108, 131
co_AttrArchive..........cocooii 133
CO_AttrDIrectory......cccovviviiiiiiiiniiinnns 133
co AttrHidden.........cc.ooiiiiiiiiiii 133
co AttrReadOnly.........ccoovviiiiiiiiiiiienene, 133
CO_AIrSYStEM...iviviiiiiiiiiieeeee 134
co DayFactor.........coovvviiiiiii 99
€O _HOUrFactor......cocovvieiiiiiiiiiiie e 99
co_InvalidFileld..............ooiii 109
co_MicroSecondFactor.............cccvvvienennnnn. 99
co_MilliSecondFactor..........c.covvvviiniinnnns, 99
co_MinuteFactor...........cocvviiiiiiii 99
co_SecondFactor...........oooeviiiiiiiiinnn, 99
COLLMAP DCL....cviiiiiiiiiiiiiee 91
COLLMAP DEF....cciiiiiiiiii 92
CompressPath.........c.cooiiiiiiiiiiiiii 127
CompSubStr....coviiiiii 117
COMPT 0 e 118
ContainsKey....covovviiiiiiii i 75, 78
ContainSODbj...cviii i 63
ContainSPLr.....ocvvivii 68
ContainsRef.......oooviiiiiiii 72
ConVert.. ..o 121
G oY it 131
CopyDriveFrom......coccvviiiiiiiiic i 127
CopyDrivePathFrom..........ccoooviiiiiiiinnnns 127
CopyEXtFrom.....ccooviiiiiii 127
CopyNameExtFrom...........c.cooiiiiiiinnn. 127
CopyNameFrom........ccovvviiiiiiiiiieeieeenne, 127
CopyPathFrom.......c.cooiiiiiii 127
CountKeys...covviiiiiiii 75, 78
CountODbjS...c i 63
CountPtrs....ccooiiiiii 68
CountRefs.....ccoveveiiii 72
Create............ 105, 107, 108, 131, 133, 141
CreateChnStore..........ooovviiiiiiiiiins 17
CreateRndStore...........o.ooiiii, 15
CreateStdStore..........coovvviiiiiiiiiiinn, 14
ct_ AnyBlock........cooooi 18
Ct_ ANyStore.....coovviiiiiiiii 10
Ct_AITAY. .ottt 92
ct_BlockDList........cocoviiiiiiiiii, 92
ct_BlockRefDList........cccoviviiiiniiiinnn, 92
ct_Chn_[WI]String........coooiviiiiiiiniinienns 122
ct Chn Block......coooviiiiiii, 32
ct_Chn_BlockRefStore.............cocoiiiinnnn 38
ct_Chn_BlockStore.........cocvvviiiiiiiiinnninnnnn. 34
ct Chn_RefStore..........cocovviiiiiiiinn, 37
Ct Chn _Store.......covevviiiiiiiiiieee, 17
ct Chn16BlocK........ocvviviiiiiii 32
ct_ Chn16BlockRefStore...........cccovevvinnnnnn. 38
ct_ Chn16BlockStore.........ccooveviiinininnn. 34
ct Chn16RefStore.......c.covvvviiiiiiniiien. 37

Spirick Tuning Reference Manual Page 154

ct Chn16Store......c.cvevviviiiiiii, 17

ct Chn32Block.......cocoviiiiiiiii, 32
ct Chn32BlockRefStore.........c.coceveivininnnnn. 38
ct Chn32BlockStore..........coovvviiiiiiiinnnnnnn. 34
ct Chn32RefStore........cccovvviviiiiiiiiiine, 37
ct Chn32Store......coovvvviiiiiiiii, 17
ct Chn8BIOoCK.......ivviiiiiii 32
ct_ Chn8BlockRefStore..........coccvviiiiiininnnnn. 38
ct Chn8BlockStore.........cocvvvviiiiniiiininnnn. 34
ct Chn8RefStore.........covvviiiiiiiiin, 37
ct ChN8Store.....cc.vvvviiiiiiieieee 17
ct ChnStore......coovvviiiiiii 15
ct Collection.......ccovviiiiiiiiiiiiin 88
Ct Directory......ooveiiiiiiiieeee 132
ct DirScan......coviiiiiiii 134
Ct DLiSt i 92
ct File. oo 129, 130
ct FileName........cocovviiiinnnn, 123, 125
Ct MDb . 139
Ct ODbjecCt..civiiiiiiiii 87
ct PackStore........coooiiiiiiiii 39
ct PackStoreBase............cociiiiiiiiiin 38
ct PageBlock.........cocooviiiiii 30
ct PageBlockBase...............oooiiiiiinn, 29
ct PrMutex........cooviiiiiii 105
ct PrSemaphore..............coein 106, 107
ct_RefCollection...........coovvviiiiiiniiininnn, 91
ct RefCount.....cocoiiiiiiiiii, 34
Cct RefDLiSt. ..o 92
ct Rnd _[WIString.......cooovviiiiiiiiiinn, 122
ct Rnd BlocK......covviiiiiiiii 31
ct Rnd_BlockRefStore..........c.cooeviiiiinnnn. 38
ct Rnd _BlockStore.........ooooviiiiiiiiniinnn. 34
ct Rnd _RefStore......cccoviviiiiiiiiiiii, 37
ct Rnd Store......coooiiiiiiiiiiii 15
ct Rnd16BIoCK.......vvvviiiiiiiiiee 31
ct Rnd16BlockRefStore............coovvvviinnins 38
ct Rnd16BlockStore........cccovvvvivieinininnnnnn. 34
ct Rnd16RefStore........coevvviiiiiiiiiiiiinnns 37
ct RNd16Store......cc.vvvviriiiiiiiiieeeeen, 15
ct Rnd32Block........covviiiiiiiiii 31
ct Rnd32BlockRefStore...........ccvvvvviiiinnins 38
ct Rnd32BlockStore........ccocvviiiiiniiinnn, 34
ct Rnd32RefStore........covvviviiiiiiiiiiiinnns 37
ct Rnd32Store.......cooviiiiiiiiii 15
ct Rnd8Block.......cocovviiiiiii 31
ct_ Rnd8BlockRefStore...........cocvviiinininnnnn. 38
ct_Rnd8BlockStore..........cocooviiiiniinn, 34
ct Rnd8RefStore........ccoovviviiiiniiiiin, 37
ct Rnd8Store......c.cooviiiiiii 15
ct RndStore.....c.covviiiiiiiii, 14
ct_SharedMemory............c.oceiiiiiiinnn, 108
ct SharedResource............ccoovvveiininininnne. 104
ct_SortedArray......c.coevviviiiiiiiiii 92
ct Std [WIString.......ccooovviiiiiiiiinnn, 122
ct Std Block....ccovviiiiiiiii 31
ct Std BlockRefStore..........cocvoviiiiinininnnn. 38
ct Std BlockStore.........ccovviiiiiiiiniiinnnnnn, 34
ct Std RefStore........ccoovvviiiiiiiiiiiiin, 37
Ct Std Store.....ocovviviiiiiiii 14

ct Std16Block.......cccovviiiiiiiii 31
ct_Std16BlockRefStore.............c.ociininn, 38
ct_Std16BlockStore........cccevvviiiiiiiiiiiininns 34
ct_Std16RefStore...........ccovviiiiiiiinn, 37
Ct StdT16Store.....ccvvvviiiiiiie e 14
ct_Std32Block.......ocoeeviiiii 31
ct_Std32BlockRefStore..........coccvvivinininnnnn. 38
ct_Std32BlockStore........covvviiiiiiiiiiiiii 34
ct Std32RefStore......c.covvvviiiiiiiiiie, 37
Ct_Std32Store.....ccvvviiiiniiiii 14
Ct _Std8BIOCK. ... viieieieiiie i 31
ct_Std8BlockRefStore.........cocovviviiiinininnnn. 38
ct_Std8BlockStore..........ocvviiiiiiiii 34
ct Std8RefStore.......cccovvvviiiiiiiii, 37
ct_Std8Store.......ocvvviiiiinii 14
Ct StAdStOre....covviviiiii i 13
Ct StriNg...c.ovviiiiii 123
ct_StringSort......cooviiiiiii 128
ct_ ThMutex........oooiiiiiii 102
ct_ ThSemaphore...........cooovviiiiiinnn, 103
ct TimeDate...........coooeiiiiiin, 137, 138
Ct UINt32S0rt. e 129
Ct UUID..ooiiies 140
ct WSHring....coooviiii 123
cu_HashPrimel.............ooiinn, 57
cu_HashPrime16...............oooiiiinn, 57
cu HashPrime2............c.coiviiiin, 57
cu_HashPrime4..............oooiiiinn, 57
cu_HashPrime8..........ccooviiiiiiiiiin, 57
DecCharSize......coovviiiiiiiiiiiieeei e 25
DecltemSize...c.ocvviiiiiiiiiiic i 27
DecltemSizeT....ccovveiiiiieiiii e 27
DecRef. ..o 35, 36, 60
DelAll .. 44
DelAlIKEY. ... 79
DelAllKeyAndValue........c.ccceeieieiennnnnn.. 76, 80
DelAIIPLr . 68
Del AlIPtrANdODbj....ceeiiiii e 68
Delete...ccoviviiiiiiiiiiieeas 119, 131, 133
DeleteChars......covieiiiiiiiiii e 26
DeleteChnStore........ccovvieiiiiiiiieieene 17
Deleteltems......cccoiiiiiiiiiiii e 28
DeleteRev......coviieiiiii s 119
DeleteRndStore........cooooeieiiiiiiiiieien, 15
DeleteStdStore........covvvviiiiiiiiiiiiiiie, 14
DelFirstEqualObj.......cocoieiiiiiiiiiiiiieee 64
DelFirstEqualObjCond...........ccceveieieinnnnnnnn. 64
DelFirstEqualPtr.........ccoooiiiiiii 69
DelFirstEqualPtrAndODbj.........cccoivvieieinnnnn. 69
DelFirstEqualPtrAndObjCond............cc..uen... 70
DelFirstEqualPtrCond.........cccoceviiiiiiennenn.. 69
DelFirstEqualRef........cccoiviiiiii 73
DelFirstEqualRefAndObj.........ccocvvivviinnnnt. 74
DelFirstEqualRefAndObjCond..................... 74
DelFirstEqualRefCond.........ccoceviiiiiiinnnnnnn.. 73
DelFirstKey...cooovviiiii e 80
DelFirstKkeyAndValue...............cccoeeeeee 76, 80
DelFirstkeyAndValueCond................... 77, 80
DelFirstKeyCond.........oooiviiiiiiiiiii i 80

Spirick Tuning Reference Manual Page 155

DelFirstODb]. ..o 49

DelFirstPtr....cccoviiii 67
DelFirstPtrAndODbj......cccocoviiiiiiiiiin 68
DelKeY. . 79
DelKeyAndValue...........cccovviiiiiniinnn, 76, 80
DelLastEqualObj........cccoviiiiiiiiiiiiieeee 64
DelLastEqualObjCond...........ccvvvvviviiinnnn. 64
DelLastEqualPtr.......c.ccooiiiiiiiiiiiiiiee 69
DelLastEqualPtrAndObj..........ccoovvveiennnn. 70
DelLastEqualPtrAndObjCond...................... 70
DelLastEqualPtrCond..........cccocvvviiiinnnnn. 69
DelLastEqualRef......ccccoviiiiiiiiiiiiien 73
DelLastEqualRefAndObj.........ccevvvviniinnnn. 74
DelLastEqualRefAndObjCond..................... 74
DelLastEqualRefCond.........cocovvviiiiiiiiinnnnn. 73
DellastKey...covviiiiiiii e 80
DelLastKeyAndValue............ccevvivvinnnn, 76, 80
DelLastKeyAndValueCond................... 77, 80
DelLastKeyCond......c.coceiiiiiiiiiiiiiiieeen 80
DelLastODbj....covueieieiiiii e 49
DellLastPtr...cccvviiiiiiiiii e 67
DelLastPtrAndObj.......ccooeieiiiiiiiiiiieeeee 68
DelNextODbj.....ccvveiiiiii e 49
DelNexXtPtr. ..o 67
DelNextPtrAndODbj........cccviiiiiiiiiiien, 68
DeINthODj. .o 49
DelNthPtr....ccvi 68
DelNthPtrANdOD]....covviieieiiii v 68
DelObj. . v 44
DelPrevODbj....ccvviiiiiiiii e 49
DelPrevPIr....covv i 68
DelPrevPtrAndODbj....c.cocoviiiiiiiiiiiieen 68
(=Y | PR 67
DelPtrANdOD]....covveiiiiic e 68
DLIST DCLS. ..t 53
ENdOfFile....oeoeieiiii e 131
et Compiler......ccoovnviiiiiiii 111
et ResError.......c.ooooi 93
et SyStemM...coiviiiii 112
et UtfError.......ooiiiii 96
EXiStS..iuiniiiieiiiei e 131, 133
FillChars.....cooiiieii e 26
Finalize....coovvniiiii i 139
FiNdFirst. . ..o 135
FindFirstDirectory.........cocoveiiiiiiiiiennenns 135
FindFirstFile.......ccooiiiii 135
FindNext.....ooovviii e 135
FindNextDirectory.......c.cccooviiiiiiieiienenn.. 135
FindNextFile......c.coooviiiiiiiii e 135
FINdONCE....oviiiiiiiic e 135
FindOncePath..........cccoiiiiiiiiis 135
First. i 43, 98, 117
FOUNd....coiiii e 135
Free. 11
FreeAll ... 11, 44
FreeData.......cocovviiiiiiiiieieeeee 31, 39
FreeFirstODbj....ccoviiiiiiiic e 49
FreeLastObj......coovviviiiiiiiiiiicice, 50

FreeNextODbj....cooviiiiiiiii e 50
FreeNthODbj.......coooiiiiii 50
FreeObj . .o 44
FreePrevODbj.....cocovviiiiiiii 50
FreeUnused...........cocooviiiiiinnnn, 17, 33
FromStr. ..o 141
ft_ ThreadFunc.........ccooiiiiiiiii, 101
gct AnyContainer........cocoevveieiinininnennns 41, 42
GOt AITAY ..t 50
get BloCK....viviiiiii 20
gct BlockBase........ccooveiiiiiiiiiiiii 19
gcet BlockStore......oovvvviiiiiiiiiiii 32
gct CharBlocK.......ocoviiiiiiiiiiiiee, 25
gct Chn Array........cooovviiiiiiin, 52
gct Chn BlockDList........ovvviviiiiiiiieenene. 59
gct Chn _BlockPtrDList........c.cocoviiiiniinnnin, 84
gct_Chn_BlockRefDList.......ccoovvviiiiinininnnn, 62
gct_Chn_BlockRefPtrDList...............c...ueee. 86
gct Chn DList...cocoiviiiii 54
gct_ Chn_HashTable...................on 58
gct Chn PtrArray.......cocooviiiiiiiin, 81
gct Chn PtrDList ..o 82
gct_Chn_PtrHashTable...................oooni 83
gct Chn_PtrSortedArray.......cccooviviiiinninns 83
gct Chn_RefDList........cccooiiiiiiiinn, 61
gct Chn_RefPtrDList.........cocoviiiiinininnn. 85
gct_Chn_SortedArray..........cooevviiiininnnnnnn. 56
gct ChnTBAImay....ccovviiiiiiiic e 52
gct Chn16BlockDList..........cccveviiiiiinnnns 59
gct Chn16BlockPtrDList..........ccccvivienennnnn. 84
gct Chn16BlockRefDList..........cccocvviviennnn. 62
gct Chn16BlockRefPtrDList.............cceuueee.. 86
gct Chn16DLIiSt...cccvviiiiiiiiiiie, 54
gct Chn16HashTable..........c.cocvvviiiennnn. 58
gct ChnTBPIrAIray.....coveiviiiiiii i 81
gct Chn16PtrDList......cccvviiiiiiiiiiie 82
gct Chn16PtrHashTable...........cccovvieieennns 83
gct_ Chn16PtrSortedArray..........cocoevvvinennen. 83
gct Chn16RefDList......ccovvviiiiiiiiiieieeene 61
gct Chn16RefPtrDList...........ocoviiiiiinnnin, 85
gct_ Chn16SortedArray........coovvvviiiininnnn. 56
gct Chn32Array.......cooviviiiiiiiiii 52
gct Chn32BlockDList......c.cooviiiiiiiiinnnn, 59
gct_Chn32BlockPtrDList...........cocevvinininnn. 84
gct_Chn32BlockRefDList..........ccevvininnnnn. 62
gct Chn32BlockRefPtrDList.............c.e.ee. 86
gct_ Chn32DList....ccuiiiiiiiiiiiiie 54
gct Chn32HashTable...............ccooeiinis 58
gct Chn32PtrArray.....cccoooiviiiiiiiiiiiines 81
gct Chn32PtrDList........oocvviiiiinninn, 82
gct Chn32PtrHashTable...........cccoeiiiiniis 83
gct Chn32PtrSortedArray.........cccovvvvinnnnnn. 83
gct Chn32RefDList.......cocovviviiiiiiiiiiinn, 61
gct Chn32RefPtrDList.......covvvvvviiiiiennnnn, 85
gct Chn32SortedArray........ooovvvviiiiennnnnn. b6
gct ChNBAITAY.....ciiieii e 52
gct Chn8BlockDList.......ocvvvviviiiiiiiiieenn, 59
gct Chn8BlockPtrDList........ccvvvuvivienennnns. 84
gct Chn8BlockRefDList.........ocvvuvviviiiininnns 62

Spirick Tuning Reference Manual Page 156

gct_Chn8BlockRefPtrDList.........ccvvvviininnnns 86

gct Chn8DList.....cciviiiiii, 54
gct Chn8HashTable............cooveiiiiiiinnn, 58
gct Chn8PtrArray.......ccooovviiiiiiis 81
gct Chn8PtrDList......ccccoviviiiiiiie, 82
gct_ Chn8PtrHashTable................c.ocvenia, 83
gct Chn8PtrSortedArray........c.coevveieinnnnnn. 83
gct Chn8RefDList......coccvviviiiiiiiiie, 61
gct Chn8RefPtrDList........ovvviiiiiiiiienne, 85
gct Chn8SortedArray........coovevviiiiiinininnnnn. 56
gct_ CompContainer........cocovvieieenininininennns 62
gCt DLiSt.cuiviiiiiiiii 52
gct EmptyBaseBlock...........oovviiiiiiiinn, 20
gct_ EmptyBaseMiniBlock...............c.coceen. 22
gct EmptyBaseResBlock.............ooocvivinnnn. 23
gct ExtContainer.......cccovvveiiiiiniininiienenanns 47
get FixBlock......oovvveiiii 24
get_FixltemArray.....coovvviiiiiiii 51
gct_FixltemBlock.........ooooi 28
gct_FixltemSortedArray.........coovviviinnnnnn. 55
gct HashTable.........ooooiii, 57
get_ltemBlocK......covvviviviiii 27
get Map.....coooviiiiii 74
gct MiniBlocK........covveiiiiiiiii 21
gct_MiniBlockBase............cooviiiiiiini, 21
gct NullDataBlock.........cooeiviiiiiiiiiinn, 24
gct_ObjectBaseBlock........ccccoeviiiiiiniinnnn, 20
gct_ObjectBaseMiniBlock...................ceei. 22
gct_ObjectBaseResBlock...........cccovvvivnnnnn. 23
gct PackStore......cooovvviiiiiiiii, 40
gct PtrCompContainer.........c.ccvvvvvvininnnnnn. 72
gct PtrContainer.......ccoevvviviiiiiiiniiin, 65
get PtrMap.......coooovviiiiiii 77
gct RefDList....occvviiiiiiiiii e 59
gct RefStore.....cooovviviiiiii 35
gct ResBIOCK.......oviviiiiiiii 23
gct ResBlockBase...........coovviiviiiiiiiiinnnn, 22
gct RNd Array....cooeviiiiiiiiiie e 52
gct Rnd BlockDList.......ccooviiiiiiiiiinnnne, 59
gct_ Rnd _BlockPtrDList........ccocvviiiiiiiinnnnn. 84
gct Rnd_BlockRefDList........c.covviiiiininnnne. 62
gct Rnd_BlockRefPtrDList..........cccvvvivinnnn, 86
gct Rnd DList....ccuiiiiiiiiiiiiiiieee 53
gct Rnd HashTable...........coooiiiiiiinnnn, 58
gct Rnd PtrArray.......ooooivii, 81
gct Rnd PtrDList....covviiiiiiii 82
gct Rnd_PtrHashTable....................o 83
gct Rnd_PtrSortedArray........cocooviiiiinnns 83
gct Rnd_RefDList......ccvvviiiiiiiiiiiis 61
gct Rnd_RefPtrDList.......ccovviiiiiiiiiiinins 85
gct Rnd_SortedArray.......cccovviiiiiiiiiininnnnns 56
gct RNdTBArray......ccoovvviiiiiiiiiees 52
gct Rnd16BlockDList........cccovviviiiiniiiiinnns 59
gct Rnd16BlockPtrDList..........vcvvviviiininnnns 84
gct Rnd16BlockRefDList........cccvvvvuininininens 62
gct Rnd16BlockRefPtrDList.........cccovvuvnnens 86
gct RNdTBDLIst....cveivieiiiiiiiiieie e, 53
gct Rnd16HashTable.........cccceviviiiiniiiennnns 58
gct Rnd16PtrArray.......cocoviiiiiiiiie 81
gct RNdT16PtrDList......occvviviiiiiiiiicee, 82

gct Rnd16PtrHashTable.............c.oocvinnni, 83
gct Rnd16PtrSortedArray...........ocevinennnn. 83
gct Rnd16RefDList......ccovvviiiiiiiiiiee, 61
gct Rnd16RefPtrDList......ccccoviviiiniiiiennn, 85
gct Rnd16SortedArray.........ovevvvviieinnnnnnnn. 56
gct RNd32Array....ccovivviiiiiiii, 52
gct Rnd32BlockDList.......occvviviiiniiiiiiinnns 59
gct Rnd32BlockPtrDList........ccvvvvviviiininnns 84
gct Rnd32BlockRefDList.........ccvvuvvivininnnne. 62
gct Rnd32BlockRefPtrDList...........ccvvvveeene. 86
gct RNd32DList...ccoviiiiiiiiiiiii 53
gct Rnd32HashTable............cooveiviiininn. 58
gct RNd32PtrArray......cccovvvviiiiiiiiiinnn 81
gct RNd32PtrDList.....ccccovvviiiiiiiiiiieieeene, 82
gct Rnd32PtrHashTable............cccoceiienian, 83
gct Rnd32PtrSortedArray........cccvevevnennnnn. 83
gct Rnd32RefDList.....ccovvviviiiiiiiiiiiiens 61
gct Rnd32RefPtrDList.......c.cocvvviiiiiiiiininnnns 85
gct Rnd32SortedArray.......c.ooevviiiiiininnnn. 56
gct RNd8BArray.....c.covvviiiiiiii 52
gct Rnd8BlockDList........ccooviiiiiniiinn, 59
gct_Rnd8BlockPtrDList.........ccoviviniinininnnn. 84
gct Rnd8BlockRefDList.........coccvviiininnnnnn. 62
gct_Rnd8BlockRefPtrDList.............cceeunnenn. 86
gct Rnd8DList.......cocvvvviiiiiiiiiii, 53
gct Rnd8HashTable.............oooiviiin, 58
gct RNd8PtrArray......ccooovviiiiiiiiiiee, 81
gct Rnd8PtrDList.....cccovviiiiiiiii, 82
gct Rnd8PtrHashTable...........cccevvvviiiininnns 83
gct Rnd8PtrSortedArray..........cocvvvviiinnnnnn. 83
gct Rnd8RefDList......cccovvvvviiiiiiiiiiiieien, 61
gct Rnd8RefPtrDList.......cccvcviiiiiiiiin, 85
gct Rnd8SortedArray......cocovviiiiiiiinennnnnn. 56
gct SortedArray......ccovviiiiiii 54
gCt Std AITay..oeoeer i 52
gct Std BlockDList......o.vvvvviiiiiiiiiieen, 59
gct_Std BlockPtrDList........ccovveiviiiininnnns 84
gct Std BlockRefDList.......ccovveivuinieniinnnn. 61
gct_Std BlockRefPtrDList..........cccovuvninnnnn. 85
gct Std DList...iciiriiiiiiii e 53
gct_Std HashTable..........cocooiiiiiiiiinnnn, 58
get_Std PtrArray......oooviiiiiiiii 81
gct Std PtrDList....o.ooviiinii 82
gct_Std PtrHashTable............c.coooiiiiiininnn, 83
gct Std_PtrSortedArray............ooooiiinn, 82
gct_Std RefDList.......coeveniiiiiiiiiiiinn, 61
gct Std_RefPtrDList.......ocoiviiiiiiiiin, 85
gct Std_SortedArray........ooooiiiiiiiiin 56
gct StdTBArmay....ccovvvviiii 52
gct_Std16BlockDList.........cccoviviiiiininnnne. 59
gct Std16BlockPtrDList.........c.cocviinnnnnn. 84
gct Std16BlockRefDList.........cccocviinnnnnnn. 61
gct Std16BlockRefPtrDList..............cuevee. 85
gct Std16DList......ocvveiiiiiiii 53
gct Std16HashTable.............ccoocvivieinnnnnn. 58
gct StdT1BPtrArray........coovvviiiiiie, 81
gct StdTBPtrDList.......ovveiiiiiiiieeeee, 82
gct Std16PtrHashTable.............c.coeeiennnnn. 83
gct Std16PtrSortedArray.......cccoevveieinnnnnnn. 82
gct StdT16RefDList....cccvvviiiiiiiiiiiiienne, 61

Spirick Tuning Reference Manual Page 157

gct Std16RefPtrDList.......covvviiiiiniiinnn, 85

gct Std16SortedArray......coooeviiiiniiinnnnn. 56
gct Std32Array......cocevviiiiiiiiiii 52
gct_Std32BlockDList.........coccviviiiiiiniinnnnn, 59
gct _Std32BlockPtrDList........ccccvvvieininnnnne. 84
gct_Std32BlockRefDList.........cccvvvinininnnnnn, 61
gct _Std32BlockRefPtrDList..........c.covvuvvnene. 85
gct Std32DList....cuvvviiiiniiii 53
gct Std32HashTable...........cccccvivieiniinnnn. 58
gct Std32PtrArray......c.coevviiiiiiiiiiien, 81
gct Std32PtrDList......ccvvviiiiiiieiieeens 82
gct _Std32PtrHashTable.............c.cocvvvvnnnen. 83
gct_Std32PtrSortedArray.........ooveviiininnnn, 82
gct Std32RefDList....coccvviviiiiiiiiiieiieen, 61
gct Std32RefPtrDList.......ccccviviiiniiiinnnnn, 85
gct _Std32SortedArray......oovveviiiiininieenn. 56
gct Std8Array.......cocviiiiii 52
gct_Std8BlockDList......c.covviviiiiiiiiiinnn, 59
gct _Std8BlockPtrDList.......ccovuviiiniiiinnnne, 84
gct Std8BlockRefDList........cocvviniininnnnn, 61
gct_Std8BlockRefPtrDList.............cecvenne. 85
gct Std8DList......ceiviiiiiiiie 53
gct _Std8HashTable...........ccooeiviiiiinn, 58
gct Std8PtrArray.......ccoeviiiiiiiiii, 81
gct Std8PtrDList........ocovvvviiiiiiii, 82
gct _Std8PtrHashTable................ococinni, 83
gct _Std8PtrSortedArray........cooeevviiinininnnnn. 82
gct_Std8RefDList.......ccocvviviiniiiiiiiin, 61
gct _Std8RefPtrDList.......ccovvvviiiiiiiiiiinn, 85
gct_Std8SortedArray.......covevviiiiiiiiiiiinnn, 56
GCt StHNG...iviiiiiiii 113
get UtfCit..ooiii 97
gct VarltemBlock. ..o, 28
GetAddr. ..o 19
GetAllLen.o 126
GetAllocByteSize.....coovviviiiiiiiiiciiiie e 23
GetAllStr....coeviiiiiii 126
GetAttributes.........oocvviiiii 136
GetBYyteSize...oovviiiiiiie 19
(CT=Y {04 o - 98, 116
GetCharAddr......c.coviiiiiii, 26
GetCharPos........cccvcviiiii 98
GetCharSize........ocooviiiiiii 25
GetChnStore.......coovviiiiiii 17
GetCreationTime.......cccovvivieiiiiiiiiieae 135
GetData......ccovvveiii 108
GetDay ..o 138
GetDayOfWeek........coooviiiiiiiiiiin, 138
GetDefaultPageSize...................... 26, 28, 30
GetDotLen.....c.oovviiiiiiii 126
GetDrive. ..o 126
GetDriveLen.....cocovviiiiiii 126
GetDriveOffs....ooviiiiiiii 126
GetDrivePath........cccooiiiiii 126
GetDrivePathLen............coooviiiiiiiinnns 126
GetDriveStr....cooviviii 126
GetENtries. ... 16
GEtEIMOr. vt 98
GetEXt..oviiiii 126
GetExtlen.....cccovviviiiii 126

GetEXtOffs.. i 126
GetEXtStro 126
GetFirstEqualObj......ccocvviiiiiie 63
GetFirstEqualRef........cooiiiiiiii, 73
GetFirstODbj....oviiiii 47
GetFirstPtr ..o 66
GetFirstValPtr.....c.ooooiiiiicc e 79
GetFirstValue........ccooviiiiiiiiicii e 76
GetFixPagePtrs.......ccoovviiiiiiiiiiiiie 30
GetFiXSizZe. .o 27
GetHash......cooevviiiiii 88, 116, 140
GetHashSize.......cooiiiiiii b7
GetHour...oooo 138
GetlnitSuUcCesS.....ovvvviieiiennnnns 102, 103, 104
GetltemAddr......cooooiiii 28
GetltemSize...cocviiiiii i 27
GetKeY. .o 75, 79, 104
GetLastAccessTime.....cccocvviiviiiiiinnnnn... 135
GetLastEqualObj........cocvieiiiiiiiie 63
GetLastEqualRef.......ccovviiiiiii 73
GetLastODbj...covveviiiii 47
GetLastPtr....coooiiii 66
GetLastValPtr.....cooooiiiiiiii i 79
GetLastValue.....ccoooeiiiiiiii i 76
GetLastWriteTime.......coovvvviiiiiiiie e 136
Getlen..iveiiii e 43, 116
GetMaxByteSize......ooovvviiiiiiiiiiiiiiees 19
GetMaxChainEXp......cvveiiiiiiiiiiiiieen, 16
GetMaxCharSize......ccveiviiiii i 25
GetMaxltemSize.......coovviiiiiiiiiiiies 27
GetMaxLen....ovvvvviiiiiiiieienns 51, b5, 116
GetMicroSecond.........coovvviiiiiiiiiieeine 138
GetMIinByteSize......ccovvviiiiiiiiiici e 23
GetMIiNUTE....coviiieii i 138
GetMonth....cooiiiii 138
GetNaMEe. ..o 126
GetNameEXt.......c.coviiiiiiiii i 126
GetNameExtLen........ccovviiiiiiiiiienne, 126
GetNamelLen.......cccooiiiiiiiiii i, 126
GetNameOffs.....cviiviiiiii e 126
GetNameStr.....coooiiiii 126
GetNewFirstObj......ccvvvviiiiii i 48
GetNewLastODbj......c.cooevviiiiiiii s 48
GetNewODbj....oovvii i 48
GetNewObjJAfter......coovviiiiiiee 49
GetNewODbjAfterNth............cooiiiiiiinnne. 49
GetNewObjBefore........ccoovviiiiiiiiiiinnen, 48
GetNewObjBeforeNth.............ccoeiiiiiinnnnn. 49
GetNextObj.....covvviiii 48
GetNextPIr ... 66
GetNthODj...ceeiiii e 48
GetNthPtr...cc e 66
GetODb]. i 43
GetPageSize.....ooviviiiiiiiic 30
GetPath.....ccooiiii 126
GetPathLen......ccooovviiiiiii e 126
GetPathOffs....ccoovviiii e 126
GetPathStr......ccoooviiii 126
GetPrevODbj...ovvieiii 48
GetPrevPIr. ..o 66

Spirick Tuning Reference Manual Page 158

(=Y o ¥ 66

GetPureDrivePath..............ocoooiiil. 126
GetPureDrivePathLen..........c.ccoovvviiiiiiinnn, 126
GetPurePath........coooiiiiii 126
GetPurePathLen..........c.coviiiiiiiii i, 126
GetRawAddr....c.ovviii i 26
GetRawLlen....cooviiiiiiiici 98
GetRaWPOS. ... 98
GetRef..oviiii 35, 36, 60
GetResUlt. oo 139
GetResUltSIr. .o 139
GetRevChar.....ocviiiiiiiiicc e 116
GetRndStore.....coovviiiiii 15
GetRoundedSize.......ccvvviiiiiiiiiici s 30
GetSecond......cooiiiiiiiii 138
GetSize. oo 16, 108, 136
GetStdStore....covvviiiiii 14
GetStore. .o 36
GetStr i 116
GetTime. .o e 138
GetUUID. .. 140
GetValPtr....oooii 79
GetValuB.. .o 75
GetYear oo 138
GLOBAL STORE DCLS.......coeoviiiiiiiiiienenns 12
GLOBAL STORE DEFS.........ccoiiiiiiinns 12
HasDot....oiiiii e 126
HasDrive. ..o 126
HasDriveOrUNC........cccoiiiiiii i 126
HasSEXt...oiiiiiii e 126
HasFree. ..o 33
HASHTABLE DCLS.......oiiiiiiieeeeen 58
HasName.......ocovieiiiiiiiii i 126
HasPath........coooiiii 126
HasUNC......ooi e 126
HasWildCards........ccovvviiiiiiiiciie e 126
INcCharSize.....ccooiiiiii 25
INCIEMSIZE. ..o 27
IncltemSizeT ..o 27
INCREf i 35, 36, 60
Y 39, 40
Initialize...ccooeii 35
INSEIM . 119
InsertChars.......ccociiiiiiiiiie 26
InsertDrivePath............cooooiiiiiiiin s, 127
InsertF. ..o 120
INSErtltemsS. ..ccov i 28
InsertPath..........ocoiiiii 127
ISADS. .. 127
ISAHOC. .t 35, 36, 60
ISAIChIVE...cc i 136
ISDIreCtory. ..o 136
ISEMpPty..cooviiiiiiiiiiiei e 43, 116, 140
ISFreE. i e 35, 36, 60
IsHidden. ..o 136
ISNUIL .. 35
IsReadOnly......ccovviiiiiiiii e 136
ISREL. . e 127

ISSYStEM. et 136
1= 1= 43, 117
LastldX...oovieie i 33
LastPageError.....coovveviiiiiiiii e 30
LastPageWarning........coooviiiiiiiiiiiiiinnnenns 30
I T To 131
o Yo 102, 106
MaxXAIOC. ... 11
MaxDataAlloC......ccvvviiiiiiiii e 39
MbBCONVEIMo e 121
MOVE... it 131, 133
NEXT. et 43, 98
Nth. 43
(@] 7= o 1R 105, 107, 108, 130
operator I =.......cciiiiiiiiiiienn, 121, 139, 141
OPErator ().uuvvi i i 116
operator [l 116
(o] o1=1 4= (o] g ST 121
OPErator 4 = ...ciiiiiiiiiiiii i 121
operator <........ccvveiiieinnnnn 88, 121, 123, 139
operator < = ...ciiiiiiiiiiiie 121, 139

operator = 18, 43, 121, 125, 130, 132, 134,
140

operator = =.........cceeunen. 121, 139, 140, 141
OPErator >ciiiiiiiiiiii i aaen, 121, 139
operator > =o 121, 139
operator delete.......covvvviiiiiii i 17
operator delete [1.......cooviiiiiiiiiiiiiiiiienns 17
fo] oT=1 = 1 (o1 gl o 1AV 17
operator NEW [J....oviiiiiiiiiiiiiiicieieans 17
POSOf. i 11
PreV . 43
PTR_ARRAY DCLS.....cciiiiiiiiiiieeee 81
PTR DLIST DCLS.....oiiieieiiieeeeeeeeee 81
PTR_ HASHTABLE DCLS.......cccovvivieininnnne. 83
PTR_SORTEDARRAY DCLS........ccceevenennene. 82
QueryAllocEntries......c.ccoiiiiiiiiiciiins 17
QueryAllocSize....ovviiiici 17
QueryCurrentDirectory.........c.coveevieiieinnnn. 133
QueryCurrentDrive......coovvviiiiiiiiiiiiiaens 132
QueryCurrentDriveDirectory............cc.c..... 133
QueryFreeEntries.......coovviiiiiiiiiiiiiieens 17
QueryFreeSize....cocvvviiiiiiiii 17
QueryLocalTime.....c.coiiiiiiiii e 138
QUEINYPOS. .. 131
QUEIYSIZE. e i 131
QueryUTCTime...c.ovieiiiie i 138
Read.. oo 131
Ready....coooviiii e 98
RealloC.....ooviiiiii 11
ReallocPtr.....ccvviiiiiiiii e 31, 39
REF DLIST DCLS....cciiiiiiiieieeeeeen 60
REF STORE DCLS.....cccciiiiiiiiiiiiiieieeaes 37

Spirick Tuning Reference Manual Page 159

REFPTR_DLIST DCLS......ccociiiiiiiiiiinnn 84

Release.....cccocvvviiiiiiiiiiiiiiiee s 103, 107
Replace......coooviiiiiiii 119
ReplaceAll......cooeiiiiiiii 120
ReplaceChars.......ccooviiiiiiiiiiicee 26
ReplaceF......c.oiiiiiiii 120
RevSubStr.. ..o 116
RoundedSizeOf......cccoviiiiiiiiiiiiiiii e 11
L= 17 T 131
SearchFirstKey.......cocovvviiiiiiiiiiiene, 75, 78
SearchFirstObj......cccooviiiiiiiie 63
SearchFirstPtr.......cooiiiiiiii 69
SearchFirstRef........coooiiiii 72
SearchLastKey.....cccoviiiiiiiiii, 75, 78
SearchLastObj......ccocvvviiviiiiii e 63
SearchLastPtr........cccooiiiiiii 69
SearchLastRef........ccoooiiiiii 72
SearchNextKey......ccooovviiiiiiiiiiiennn, 75, 78
SearchNextODbj.......ccooviiiiiiies 63
SearchNextPtr........cooiiiiiiii i, 69
SearchNextRef.......coooiiiiiii 72
SearchPrevKey.......cooovviiiiiiiiiiiciinnnn, 75, 79
SearchPrevODbj......coooiiiiiii 63
SearchPrevPtr.....coooiii i 69
SearchPrevRef.......ccoiiiiiii 72
SEEKADS. .. 131
SeekRel....oieiiii 131
SEtAOC. .t 35
SetByteSize. oo 19
SetCharSize...ccooviiii i 25
SetDaY . i 138
SetDayOfWeekK......cocovvvviiiiiiiiiiiiiien, 138
SetDIIVe. . 127
SetDrivePath............ooiiiiiiii 127
SetEXt it 127
SetFixPagePtrs......cooovviiiiiiiiiiiieas 30
SetFree. i 35
SetHashSize.......ccoooiiiii 57
SetHOUN ..o 138
SetltemSize.....ccoviiiiiii 27
SetKeY. i 104
SetMaxChainEXp.....ccoovieiiiiiiiiiiiiiieeeas 16
SetMicroSecond.........cooiiiiiiiiiii 138
SetMinByteSize.......cocoviiiiiii 23
SetMinute.......coooeiii 138
SetMonth....coiiii 138
SetName. ... 127
SetNameEXt.....cocviiiiiiii e 127
SetPageSize......ccoeviiiiiiiiiiiiiiie, 33, 51, bb
SetPath....ccooiii 127
SetSecond.....cciiiiiiiii 138
SetSortedFree.......coovviiiiiiiiii e 33
SEtTIME. i 138
Y=Y A =T T 138
SiZEOT . 11
ST 129
SORTEDARRAY DCLS......coiiiiiiiiiiieeen, 55
st BatteryInfo.......cooooiiiiiii 112
st_ CompilerInfo........coveviiiiiiiiiiiin, 111

st_FileSystemInfo..............coooiinis 111
st Hardwarelnfo.................oon 111
st HeapInfo.......coooviii 8
st_ProcessMemoryInfo.................oins 111
st_SystemInfo......ccooviiiiiiiiii 112
st_UserKernelTime.............cooooiiinnn, 100
StorelnfoSize.........coooviiiiii 11
STRING DCL...cuiiiiiiiiiei e, 122
SUBSTr ..o 116
YT | o 11,19, 43
t_FileAttributes.......c.covviiiiiiiiin, 133
t Fileld....oooooiii 109
t FileSize.....ooviiii 109
TNt 6
TINtT6. 6
TINt32. 6
TNt 6
T KeY. o 75, 78
t Length..oooiiii 42
t MD5BResuUlt........coeviiii, 139
t MicroTime......ooooviiiiiiii 99
t Object. oo, 42
t Position......coooiiiin 10, 42
t RefCount.......cooviiiiiii, 34
t RefObject......ccoviiiiii, 66
T SIZE. it 10, 18, 115
tUINt 6
T UINETG. oo 6
T UINE32. 6
T UINE8. 6
T UUID. 140
T ValUB. i 75, 78
L ANOC. ..o 7
tl_AllocReserve..........coooviiiiiiiiiiiii 7
tl BeginThread..........coovvviiiiiiiiiiiiieen, 101
tl CloseFile......cocovviiiiiiii 109
tl CompareChar........cooovviieiiiiiiiiiie e, 9
tl_ CompareMemory.........cocovviiiiiiiiiiniennn, 9
tl_ CopyFile. .. 109
tl CopyMemory......cocoviiiiiiiii 9
tl_CreateDirectory........cooveviiiiiiiiiiinnns 110
tl_CreateFile...............ocoii 109
tl_CriticalPrSectionlInitSuccess................. 106
tl_CriticalSectionlnitSuccess.................... 102
th Delay......ooooiiiiiii, 100
tl_DeleteCriticalPrSection....................... 106
tl_DeleteCriticalSection...............cocevnini. 102
tl_DeleteDirectory..........c.coooiiiiiiiin, 110
tl_DeleteFile..........c.cooiiii, 109
tl_ EndProcess........ccoooviiiiiiiiii, 101
tl EndThread...........coooiiiiiii 101
tl_EnterCriticalPrSection................cooovnee. 106
tl_EnterCriticalSection...................cooeuni. 102
T EXEC. i 101
tl_ExistsFile........ocoooiii 109
tl FillMEMOry. ..., 9
tl_FirstChar....c.cooiiviiiii e, 9
tl_ FirstMemory.......ccooiiiiii 9
T Free. o 8

Spirick Tuning Reference Manual Page 160

tl_FreeReserve.............ocooi, 7
tl_FreeUnused............ooiiiiiiiinnn, 8
tl GetEnv..oooii 100
tl_GetReserveSize..............oooiiiiiiii 7
tl_ GetTempPath..........cooooiiiiiiii, 100
tl_ HasReserve...........ocoociiiiiiinn, 7
tl_InterlockedAdd.........cccovvviiiiiiiniiinnn, 100
tl_InterlockedDecrement.......................... 100
tl_Interlockedincrement...............cocevnnne. 100
tl_InterlockedRead...........cocoiviiiiiinnnnnnnn. 100
tl_InterlockedWrite...........coovviiiiiiiiins 100
tl_IsProcessRunning............cocoviviiiininnnnn. 101
tl LastChar.....cccoviviiii 9
tl LastMemoOry......oou v 9
tl_LeaveCriticalPrSection................ceviuns 106
tl_LeaveCriticalSection..............c.coceeeenne. 103
tl LocalToUTCTime........coovviviiiiiiiiiiinnnns 99
tl MaxAIOC.....cooviiiiiiiii 7
tl_MbConvert..........ccoooviiiiiii 95
tl MbConvertCount............cooiiiiiiininnnns 95
tl_MoveDirectory...........cocoviiiiiiiiiiin, 110
tl_ MoveFile. ... 109
tl_MoveMemory........c.cooviiiiiiiin 9
tl OpenFile..........cooooiiiii 109
tl_Processld..........ocoooiiiiii 101
tl_QueryBatteryInfo.............oooiiin 113
tl_QueryCompilerInfo.........cocoiiiiiiiinn. 112
tl_QueryCurrentDirectory............c.oeeennnn. 110
tl_QueryFileSystemInfo.............cocoivinnnn. 112
tl_QueryHardwarelnfo................ocooienn, 112
tl_QueryHeapInfo........cocovviiiiiiiiiiie, 8
tl_QuerylLocalTime........coooviiiiiiiiniinn, 99
tl QUEryPOS.....iiiiii 109
tl_QueryPrecisionTime...........ocoovviiiiienennns 99
tl_QueryProcessMemoryInfo.................... 112
tl_QueryProcessTimes........cccovevvvninnennnnn. 100
tl QuerySize......coovviiiiii 109
tl_QuerySystemInfo..........coooviiiiiiiinn. 113
tl_ QueryThreadTimes...........cooeeiiiiininnnnn, 100
tl QueryUTCTime. . .oveeeieieieieeeeeeeeen 99
tl Read.....coooiii 110
tl Realloc.......covviiiiii 8
tl_RelinquishTimeSlice...............cccoeeviinnn. 100
tl SeekAbs........ooiiii 110
tl SeekRel........coooiiiiiii 110
tl_SetOverflowHandler.......................... 7, 30
tl_SetReserveHandler......................ooeeni 7
tl_SetReserveSize...............cooviiinn 7
tl_StorelnfoSize.........cooooiiiii 7
tl_StringHash...............o 95
tl_Stringlength..........ooooii 95

tl_ SwapMemory........coeviiiiii 9

tl SwapObj....cooiiiii 9
tl Threadld......ccovvviiiiiiiii 101
tl_ToLoWer...cociiiiii e, 95
tl TOLOWEr2.. oo 95
tl ToUpper....coooiiiiiiii 94
tl ToUpper2......covveiiiiiiiiii e 95
tl Truncate......o.ooveiiiiiiiii 110
tl_TryEnterCriticalPrSection..................... 106
tl_TryEnterCriticalSection........................ 102
tl UTCToLocalTime.......ocovvvieininiiiiieeens 99
tl UtfConvert.....ooovviiiiiiii 97
tl_UtfConvertCount.........cocvviiiiiiiinnnnnnn, 97
tl Utflength...ocooniniii e 97
tl_ UtfToLower........coooiiiiiiii, 97
tl UtfToUpper.....ccoviviiiie, 97
tl VSprintf....oooo 128
tWrite oo 110
TOADS ... 127
ToLoWer..c.ooiiiiiiiii 120
TOLOWEIZ. .. 120
ToRel oo 128
TSt e 141
TOUPPEI e 120
TOUPPEI2. .. 120
tpf_AllocHandler.................oo 7
Truncate....cooviiiiii 131
TruncateODbj....ccvviiiiiii 44
TryACQUIrE....cvve i eaee e 103, 107
TryLock. .o 102, 1056
LI 72] o= T 130
[0 1] [oY o 102, 106
[oY = = T 139
WHte. ..o 131
WSTRING DCL....civiiiiiiiiiiiie 122
~ct_ AnyBlock.........oooii 18
~ct DirScan......coooviiiiiii 134
~ct File...coii 130
~ct_ Object....cccoiiiiiiiiiii 88
~ct_PackStore...........coooiiiiiii 39
~ct PageBlock..........ocoooiiiii 31
~ct_ PrMutex..........cocooii 1056
~ct_PrSemaphore...............ooo, 107
~ct_SharedMemory..............ooovviiinn, 108
~ct_SharedResource.............coooeviiiinnns 104
~gct_AnyContainer..........cccovveviiiininnnnn, 43
~gct_PtrContainer..............cooeviiiiinnnn, 66

Spirick Tuning Reference Manual Page 161

	1 MEMORY MANAGEMENT
	1.1 System Interface
	1.1.1 Global Definitions (tuning/defs.hpp)
	1.1.2 Reserve Memory (tuning/sys/calloc.hpp)
	1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)
	1.1.4 Heap Operations (tuning/sys/calloc.hpp)
	1.1.5 Memory Operations (tuning/sys/cmemory.hpp)

	1.2 Store
	1.2.1 Store Interface
	1.2.2 Global Stores (tuning/defs.hpp)
	1.2.3 Wrapper Class Example

	1.3 Dynamic Stores
	1.3.1 Standard Store (tuning/std/store.hpp)
	1.3.2 Round Store (tuning/rnd/store.hpp)
	1.3.3 Chain Store (tuning/chn/store.hpp)
	1.3.4 Global new and delete operators (tuning/newdel.cpp)

	1.4 Block
	1.4.1 Block Interface
	1.4.2 Simple Block (tuning/block.h)
	1.4.3 Mini Block (tuning/miniblock.h)
	1.4.4 Reserve Block (tuning/resblock.h)
	1.4.5 Fixed Sized Block (tuning/fixblock.h)
	1.4.6 Null Data Block (tuning/nulldatablock.h)
	1.4.7 Character Block (tuning/charblock.h)
	1.4.8 Item Block (tuning/itemblock.h)
	1.4.9 Page Block (tuning/pageblock.hpp)
	1.4.10 Block Instances (tuning/xxx/block.h)

	1.5 Special Stores
	1.5.1 Block Store (tuning/blockstore.h)
	1.5.2 Block Store Instances (tuning/xxx/blockstore.h)
	1.5.3 Reference Counter (tuning/refcount.hpp)
	1.5.4 Ref-Store (tuning/refstore.h)
	1.5.5 Ref-Store Instances (tuning/xxx/refstore.h)
	1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)
	1.5.7 Pack Store (tuning/packstore.hpp)
	1.5.8 Pack Store 2 (tuning/packstore.h)

	2 OBJECT MANAGEMENT
	2.1 Container
	2.1.1 Container Interface
	2.1.2 Container Operations
	2.1.3 Extended Container (tuning/extcont.h)

	2.2 Array and List Containers
	2.2.1 Array Containers (tuning/array.h)
	2.2.2 Array Instances (tuning/xxx/array.h)
	2.2.3 List Containers (tuning/dlist.h)
	2.2.4 List Instances (tuning/xxx/dlist.h)

	2.3 Sorted Containers
	2.3.1 Sorted Arrays (tuning/sortarr.h)
	2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h)
	2.3.3 Hash Tables (tuning/hashtable.h)
	2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)

	2.4 Block and Ref Lists
	2.4.1 Block Lists
	2.4.2 Block List Instances (tuning/xxx/blockdlist.h)
	2.4.3 Ref-Lists (tuning/refdlist.h)
	2.4.4 Ref-List Instances (tuning/xxx/refdlist.h)
	2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)

	2.5 Comp, Pointer and Map Containers
	2.5.1 Comp-Containers (tuning/compcontainer.h)
	2.5.2 Pointer Containers (tuning/ptrcontainer.h)
	2.5.3 Pointer Container Operations
	2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h)
	2.5.5 Map Containers (tuning/map.h)
	2.5.6 Pointer Map Containers (tuning/ptrmap.h)

	2.6 Pointer Container Instances
	2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h)
	2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)
	2.6.3 Pointer Sorted Array Instances (tuning/xxx/ptrsortedarray.h)
	2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h)
	2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)
	2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h)
	2.6.7 Block-Ref Pointer List Instances (tuning/xxx/blockrefptrdlist.h)

	2.7 Overview of Container Instances
	2.7.1 Predefined Template Instances
	2.7.2 User Defined Container Templates

	2.8 Collections
	2.8.1 Abstract Object (tuning/object.hpp)
	2.8.2 Abstract Collection (tuning/collection.hpp)
	2.8.3 Collection Operations
	2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp)
	2.8.5 Predefined Collections

	3 STRINGS AND UTILITIES
	3.1 System Interface
	3.1.1 Resource Errors (tuning/sys/creserror.hpp)
	3.1.2 Character and String Conversion (tuning/sys/cstring.hpp)
	3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)
	3.1.4 Unicode Const Iterator (tuning/utfcit.h)
	3.1.5 Precision Time (tuning/sys/ctimedate.hpp)
	3.1.6 Time and Date (tuning/sys/ctimedate.hpp)
	3.1.7 CPU Time (tuning/sys/ctimedate.hpp)
	3.1.8 Thread Utilities (tuning/sys/cprocess.hpp)
	3.1.9 Threads (tuning/sys/cthread.hpp)
	3.1.10 Processes (tuning/sys/cprocess.hpp)
	3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp)
	3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)
	3.1.13 Shared Resource (tuning/sys/csharedres.hpp)
	3.1.14 Process Mutex (tuning/sys/cprmutex.hpp)
	3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)
	3.1.16 Shared Memory (tuning/sys/csharedmem.hpp)
	3.1.17 File I/O (tuning/sys/cfile.hpp)
	3.1.18 Directory (tuning/sys/cdir.hpp)
	3.1.19 System-Related Information (tuning/sys/cinfo.hpp)

	3.2 Strings and Filenames
	3.2.1 String Template (tuning/string.h)
	3.2.2 String Instances (tuning/xxx/[w]string.h)
	3.2.3 Polymorphic String Classes (tuning/[w]string.hpp)
	3.2.4 Filename (tuning/filename.hpp)
	3.2.5 Formatted Strings (tuning/printf.hpp)
	3.2.6 String Sort Algorithm (tuning/stringsort.hpp)
	3.2.7 Number Sort Algorithm (tuning/stringsort.hpp)

	3.3 Files and Directories
	3.3.1 Files (tuning/file.hpp)
	3.3.2 Directories (tuning/dir.hpp)
	3.3.3 Directory Scan (tuning/dirscan.hpp)

	3.4 Additional Utilities
	3.4.1 Time and Date (tuning/timedate.hpp)
	3.4.2 MD5 Sum (tuning/md5.hpp)
	3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

	4 DESIGN DIAGRAMS
	4.1 Notation
	4.2 Polymorphic Class Hierarchy
	4.3 An Array Container
	4.4 A Pointer Array Container
	4.5 A List Container
	4.6 A Block List Container

	5 INSTALLATION
	5.1 Installation
	5.1.1 Available Platforms
	5.1.2 Dependencies
	5.1.3 Makefiles
	5.1.4 Global Objects
	5.1.5 Exception Handling

