
Spirick Tuning

A C++ Class and Template Library

for Performance Critical Applications

Reference Manual

Version 1.49

Juni 2023

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Notice: Some parts of the documentation are under construction and incomplete.

Spirick Tuning Reference Manual Page 2

Table of Contents

1 MEMORY MANAGEMENT 6

1.1 System Interface...6
1.1.1 Global Definitions (tuning/defs.hpp)...6
1.1.2 Reserve Memory (tuning/sys/calloc.hpp)...6
1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)..7
1.1.4 Heap Operations (tuning/sys/calloc.hpp)...8
1.1.5 Memory Operations (tuning/sys/cmemory.hpp)..8

1.2 Store...10
1.2.1 Store Interface...10
1.2.2 Global Stores (tuning/defs.hpp)...11
1.2.3 Wrapper Class Example..12

1.3 Dynamic Stores...13
1.3.1 Standard Store (tuning/std/store.hpp)...13
1.3.2 Round Store (tuning/rnd/store.hpp)..14
1.3.3 Chain Store (tuning/chn/store.hpp)...15
1.3.4 Global new and delete operators (tuning/newdel.cpp)...17

1.4 Block...18
1.4.1 Block Interface..18
1.4.2 Simple Block (tuning/block.h)..19
1.4.3 Mini Block (tuning/miniblock.h)..21
1.4.4 Reserve Block (tuning/resblock.h)..22
1.4.5 Fixed Sized Block (tuning/fixblock.h)..24
1.4.6 Null Data Block (tuning/nulldatablock.h)..24
1.4.7 Character Block (tuning/charblock.h)..25
1.4.8 Item Block (tuning/itemblock.h)...26
1.4.9 Page Block (tuning/pageblock.hpp)...28
1.4.10 Block Instances (tuning/xxx/block.h)..31

1.5 Special Stores...32
1.5.1 Block Store (tuning/blockstore.h)...32
1.5.2 Block Store Instances (tuning/xxx/blockstore.h)...33
1.5.3 Reference Counter (tuning/refcount.hpp)..34
1.5.4 Ref-Store (tuning/refstore.h)..35
1.5.5 Ref-Store Instances (tuning/xxx/refstore.h)...36
1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)...37
1.5.7 Pack Store (tuning/packstore.hpp)...38
1.5.8 Pack Store 2 (tuning/packstore.h)..40

2 OBJECT MANAGEMENT 41

2.1 Container...41
2.1.1 Container Interface...41
2.1.2 Container Operations..45
2.1.3 Extended Container (tuning/extcont.h)..46

2.2 Array and List Containers...50
2.2.1 Array Containers (tuning/array.h)...50
2.2.2 Array Instances (tuning/xxx/array.h)...51
2.2.3 List Containers (tuning/dlist.h)...52
2.2.4 List Instances (tuning/xxx/dlist.h)...53

2.3 Sorted Containers..54
2.3.1 Sorted Arrays (tuning/sortarr.h)...54

Spirick Tuning Reference Manual Page 3

2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h)..55
2.3.3 Hash Tables (tuning/hashtable.h)...56
2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)..57

2.4 Block and Ref Lists..58
2.4.1 Block Lists..58
2.4.2 Block List Instances (tuning/xxx/blockdlist.h)..58
2.4.3 Ref-Lists (tuning/refdlist.h)..59
2.4.4 Ref-List Instances (tuning/xxx/refdlist.h)...60
2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)...61

2.5 Comp, Pointer and Map Containers..62
2.5.1 Comp-Containers (tuning/compcontainer.h)...62
2.5.2 Pointer Containers (tuning/ptrcontainer.h)...64
2.5.3 Pointer Container Operations...70
2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h)..71
2.5.5 Map Containers (tuning/map.h)..74
2.5.6 Pointer Map Containers (tuning/ptrmap.h)...77

2.6 Pointer Container Instances..81
2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h)..81
2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)..81
2.6.3 Pointer Sorted Array Instances (tuning/xxx/ptrsortedarray.h).................................82
2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h).....................................83
2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)..84
2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h)..84
2.6.7 Block-Ref Pointer List Instances (tuning/xxx/blockrefptrdlist.h)..............................85

2.7 Overview of Container Instances...86
2.7.1 Predefined Template Instances..86
2.7.2 User Defined Container Templates...87

2.8 Collections..87
2.8.1 Abstract Object (tuning/object.hpp)..87
2.8.2 Abstract Collection (tuning/collection.hpp)..88
2.8.3 Collection Operations...89
2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp)..91
2.8.5 Predefined Collections..91

3 STRINGS AND UTILITIES 93

3.1 System Interface...93
3.1.1 Resource Errors (tuning/sys/creserror.hpp)..93
3.1.2 Character and String Conversion (tuning/sys/cstring.hpp).....................................94
3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)...96
3.1.4 Unicode Const Iterator (tuning/utfcit.h)..97
3.1.5 Precision Time (tuning/sys/ctimedate.hpp)..98
3.1.6 Time and Date (tuning/sys/ctimedate.hpp)..99
3.1.7 CPU Time (tuning/sys/ctimedate.hpp)...99
3.1.8 Thread Utilities (tuning/sys/cprocess.hpp)...100
3.1.9 Threads (tuning/sys/cthread.hpp)...101
3.1.10 Processes (tuning/sys/cprocess.hpp)..101
3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp)..102
3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)..103
3.1.13 Shared Resource (tuning/sys/csharedres.hpp)..104
3.1.14 Process Mutex (tuning/sys/cprmutex.hpp)...104
3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)...106
3.1.16 Shared Memory (tuning/sys/csharedmem.hpp)...107
3.1.17 File I/O (tuning/sys/cfile.hpp)...109
3.1.18 Directory (tuning/sys/cdir.hpp)...110
3.1.19 System-Related Information (tuning/sys/cinfo.hpp)...110

3.2 Strings and Filenames..113

Spirick Tuning Reference Manual Page 4

3.2.1 String Template (tuning/string.h)..113
3.2.2 String Instances (tuning/xxx/[w]string.h)...122
3.2.3 Polymorphic String Classes (tuning/[w]string.hpp)..122
3.2.4 Filename (tuning/filename.hpp)..123
3.2.5 Formatted Strings (tuning/printf.hpp)..128
3.2.6 String Sort Algorithm (tuning/stringsort.hpp)...128
3.2.7 Number Sort Algorithm (tuning/stringsort.hpp)..129

3.3 Files and Directories...129
3.3.1 Files (tuning/file.hpp)..129
3.3.2 Directories (tuning/dir.hpp)..132
3.3.3 Directory Scan (tuning/dirscan.hpp)..133

3.4 Additional Utilities...137
3.4.1 Time and Date (tuning/timedate.hpp)..137
3.4.2 MD5 Sum (tuning/md5.hpp)..139
3.4.3 Universally Unique Identifier (tuning/uuid.hpp)...140

4 DESIGN DIAGRAMS 142

4.1 Notation...142

4.2 Polymorphic Class Hierarchy...143

4.3 An Array Container..144

4.4 A Pointer Array Container...146

4.5 A List Container..148

4.6 A Block List Container..150

5 INSTALLATION 152

5.1 Installation..152
5.1.1 Available Platforms...152
5.1.2 Dependencies..152
5.1.3 Makefiles..152
5.1.4 Global Objects...152
5.1.5 Exception Handling...153

Spirick Tuning Reference Manual Page 5

1 MEMORY MANAGEMENT

1.1 System Interface

1.1.1 Global Definitions (tuning/defs.hpp)

In the file 'tuning/defs.hpp' compiler specific macros are evaluated and global data types and macros are
defined. This file is included from all other header files of the library. At the end of the file optionally the
file 'tl_user.hpp' is included. That way the behavior of the library can be changed without changing the
source code, e.g. the macro TL_ASSERT may be redefined.

Data Types
typedef ... t_Int;
typedef ... t_UInt;
typedef ... t_Int8;
typedef ... t_UInt8;
typedef ... t_Int16;
typedef ... t_UInt16;
typedef ... t_Int32;
typedef ... t_UInt32;

Numeric data types with a well-defined number of bits, signed or unsigned. The size of t_Int and t_UInt
depends on the environment (32 or 64 bit).

1.1.2 Reserve Memory (tuning/sys/calloc.hpp)

With reserve memory the program can continue elementary operations in case of memory overflow. By
using the reserve memory, there is no need to test each memory allocation for success. Reserve
memory shall be allocated on program startup. If C standard library can't allocate any more memory,
reserve memory will be released by tl_Alloc and tl_Realloc. Afterwards, tl_HasReserve returns false.
Reserve memory management is protected against multiple thread access.

Memory Overflow
Many functions in the Spirick Tuning library allocate or reallocate memory. Within any function a memory
overflow can occur. Handling each occurrence will increase program code and computing time. However
memory overflows are very rare. The Spirick Tuning library is optimized for performance. Hence, memory
overflow is handled exclusively in the tl_Alloc and tl_Realloc functions. All other parts of the library
assume success on memory allocations.

A memory allocation or reallocation consists of the following steps: Try to allocate memory with C
standard library (malloc, realloc). If it fails free reserve memory and call C standard library again. If it
fails call overflow handler and call C standard library again. If it fails terminate the program with the
function tl_EndProcess. In the last case it makes no sense to continue. Every following operation will
probably fail because of lack of memory.

Spirick Tuning Reference Manual Page 6

Data Types
typedef void (* tpf_AllocHandler) ();

Pointer to a gobal function taking no parameters and returning no value.

Functions
tpf_AllocHandler tl_SetReserveHandler (tpf_AllocHandler pf_allocHandler);

Sets new reserve handler and returns previous. Reserve handler is called if reserve memory is allocated,
reallocated or released.

tpf_AllocHandler tl_SetOverflowHandler (tpf_AllocHandler pf_allocHandler);

Sets new overflow handler and returns previous. Overflow handler will be called if reserve memory is
released and C standard library can't allocate any more memory. Within the Spirick Tuning library
memory overflow is handled exclusively in the tl_Alloc and tl_Realloc functions. All other parts of the
library assume success on memory allocations. Hence, overflow handler must not throw C++
exceptions. Exceptions from overflow handler are not handled by the library and lead to inconsistent
objects.

void tl_SetReserveSize (t_UInt u_resSize);

Sets the size of the reserve memory to u_resSize. Afterwards, tl_HasReserve returns true on success.

t_UInt tl_GetReserveSize ();

Returns the size of the reserve memory, even if it is not allocated.

bool tl_HasReserve ();

Returns true if reserve memory is allocated.

void tl_FreeReserve ();

Frees reserve memory. Afterwards, tl_HasReserve returns false.

void tl_AllocReserve ();

Tries to allocate reserve memory. Afterwards, tl_HasReserve returns true on success.

1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)

The system interface for memory allocations relies directly on C standard library. The global functions
malloc, realloc and free are used. Debugging tools and heap walkers of the C standard library can be
used together with the Spirick Tuning library. The functions tl_Alloc and tl_Realloc extend the C
standard library with reserve memory.

Functions
t_UInt tl_StoreInfoSize ();

Returns the number of bytes for memory management per block. The value is used while calculating
rounded block sizes.

t_UInt tl_MaxAlloc ();

Returns the maximum size of a contiguous memory block.

void * tl_Alloc (t_UInt u_size);

Allocates a contiguous memory block of size u_size. Returns null pointer if u_size is zero. On memory
overflow reserve handler and overflow handler are called.

Spirick Tuning Reference Manual Page 7

void * tl_Realloc (void * pv_ptr, t_UInt u_size);

Reallocates memory block pointed to by pv_ptr to size u_size. If pv_ptr is the null pointer, tl_Realloc is
identical to tl_Alloc. If u_size is zero, tl_Realloc is identical to tl_Free. On memory overflow reserve
handler and overflow handler are called.

void tl_Free (void * pv_ptr);

Frees memory block pointed to by pv_ptr. pv_ptr may be the null pointer.

Appropriate Classes
The classes ct_StdStore, ct_RndStore and ct_ChnStore rely on the global functions of this section.

1.1.4 Heap Operations (tuning/sys/calloc.hpp)

Debugging tools and heap walkers are not standardized. Hence, the system interface contains selected
heap information only. The structure st_HeapInfo contains information about the number and the size of
used and unused memory blocks. The number of unused memory blocks is a hint to memory
fragmentation. Note that some C++ compilers don't publish heap information, especially in release
mode.

Structure Declaration
struct st_HeapInfo
 {
 unsigned long u_AllocEntries;
 unsigned long u_FreeEntries;
 unsigned long u_AllocSize;
 unsigned long u_FreeSize;
 unsigned long u_HeapSize;
 };

Functions
bool tl_QueryHeapInfo (st_HeapInfo * pso_info);

Stores information about the actual heap state in the structure pointed to by pso_info. Return value false
is a hint to heap corruption.

bool tl_FreeUnused ();

Tries to free unused memory blocks. Return value false is a hint to heap corruption.

1.1.5 Memory Operations (tuning/sys/cmemory.hpp)

The system interface for memory operations relies directly on C standard library. Global functions like
memcpy and memcmp are used. In addition, some special cases are handled, e.g. zero length parameters and
null pointers. All parameters are checked by ASSERT macros. Length parameters refer to the number of
characters, not to the size in bytes.

Spirick Tuning Reference Manual Page 8

Functions
void tl_CopyMemory (char * pc_dst, const char * pc_src, t_UInt u_len);
void tl_CopyMemory (wchar_t * pc_dst, const wchar_t * pc_src, t_UInt u_len);

Copies u_len characters from pc_src to pc_dst. This function must not be used for overlapping memory
blocks.

void tl_MoveMemory (char * pc_dst, const char * pc_src, t_UInt u_len);
void tl_MoveMemory (wchar_t * pc_dst, const wchar_t * pc_src, t_UInt u_len);

Copies u_len characters from pc_src to pc_dst. This function may be used for overlapping memory blocks.

char * tl_FillMemory (char * pc_dst, t_UInt u_len, char c_fill);
wchar_t * tl_FillMemory (wchar_t * pc_dst, t_UInt u_len, wchar_t c_fill);

Sets the first u_len characters of pc_dst to the character c_fill.

int tl_CompareChar (char c1, char c2);
int tl_CompareChar (wchar_t c1, wchar_t c2);

Compares the characters c1 and c2 and returns a value indicating their relationship. The return value is
less than zero if c1 < c2, equal to zero if c1 == c2, and greater than zero if c1 > c2. The characters are
compared as unsigned values.

int tl_CompareMemory (const char * pc1, const char * pc2, t_UInt u_len);
int tl_CompareMemory (const wchar_t * pc1, const wchar_t * pc2, t_UInt u_len);

Compares the first u_len characters of pc1 and pc2 and returns a value indicating their relationship. The
return value is less than zero if *pc1 < *pc2, equal to zero if *pc1 == *pc2, and greater than zero if *pc1 >
*pc2. The characters are compared as unsigned values.

const char * tl_FirstChar (const char * pc_mem, t_UInt u_len, char c_search);
const wchar_t * tl_FirstChar (const wchar_t * pc_mem, t_UInt u_len, wchar_t c_search);

If successful, it returns a pointer to the first occurrence of c_search in the first u_len characters of pc_mem.
Otherwise it returns the null pointer.

const char * tl_FirstMemory (const char * pc_mem, t_UInt u_len, const char * pc_search, t_UInt u_searchLen);
const wchar_t * tl_FirstMemory (const wchar_t * pc_mem, t_UInt u_len, const wchar_t * pc_search, t_UInt
u_searchLen);

If successful, it returns a pointer to the first occurrence of the first u_searchLen characters of pc_search in
the first u_len characters of pc_mem. Otherwise it returns the null pointer.

const char * tl_LastChar (const char * pc_mem, t_UInt u_len, char c_search);
const wchar_t * tl_LastChar (const wchar_t * pc_mem, t_UInt u_len, wchar_t c_search);

If successful, it returns a pointer to the last occurrence of c_search in the first u_len characters of pc_mem.
Otherwise it returns the null pointer.

const char * tl_LastMemory (const char * pc_mem, t_UInt u_len, const char * pc_search, t_UInt u_searchLen);
const wchar_t * tl_LastMemory (const wchar_t * pc_mem, t_UInt u_len, const wchar_t * pc_search, t_UInt
u_searchLen);

If successful, it returns a pointer to the last occurrence of the first u_searchLen characters of pc_search in
the first u_len characters of pc_mem. Otherwise it returns the null pointer.

template <t_UInt u_len>
 void tl_SwapMemory (void * pv1, void * pv2);

Swap the contents of the two memory blocks pv1 and pv2 with size u_len bytes.

template <class t_obj>
 void tl_SwapObj (t_obj & o1, t_obj & o2);

Swap the values of the two objects o1 and o2 using operator =. A third local object is used.

Spirick Tuning Reference Manual Page 9

Appropriate Classes
The templates gct_CharBlock and gct_String rely on the global functions of this section.

1.2 Store

1.2.1 Store Interface

Stores are memory management objects. To increase performance there is no common base class with
virtual functions. However, all store classes share a common interface. So it's easy to switch between
multiple store implementations. To avoid compiler errors, all store classes contain all methods of the
common interface. Methods not supported by a specific store class contain the statement ASSERT
(false).

Class Declaration
class ct_AnyStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 void Swap (ct_AnyStore & co_swap);
 t_UInt StoreInfoSize ();
 t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 void * AddrOf (t_Position o_pos);
 t_Position PosOf (void * pv_adr);

 t_Size SizeOf (t_Position o_pos);
 t_Size RoundedSizeOf (t_Position o_pos);

 bool CanFreeAll ();
 void FreeAll ();
 };

Data Types
typedef t_UInt t_Size;

The nested type t_Size describes the size of memory blocks, examples are t_UInt, t_UInt8, t_UInt16 and
t_UInt32. If t_Size is defined as t_UInt8, the maximum size of a memory block will be 255 bytes and
objects containing size information will require less space.

typedef void * t_Position;

Store objects use position values to manage their memory blocks, examples are void *, t_UInt, t_UInt8,
t_UInt16 and t_UInt32. The position value zero is invalid per definition. The method AddrOf returns the
memory address of a position value. If the position type is void *, the position value may (or may not) be
equal to the memory address. Hence, always use the method AddrOf for memory access and do not use
the position value itself.

Spirick Tuning Reference Manual Page 10

Methods
void Swap (ct_AnyStore & co_swap);

Swaps the values of the two objects.

t_UInt StoreInfoSize ();

Returns the number of bytes for memory management per block. This method is not supported by all
store classes.

t_UInt MaxAlloc ();

Returns the maximum size of a contiguous memory block.

t_Position Alloc (t_Size o_size);

Allocates a contiguous memory block of size u_size. Returns zero if u_size is zero. On memory overflow
reserve handler and overflow handler are called.

t_Position Realloc (t_Position o_pos, t_Size o_size);

Reallocates memory block pointed to by o_pos to size u_size. If o_pos is zero, Realloc is identical to Alloc.
If u_size is zero, Realloc is identical to Free. On memory overflow reserve handler and overflow handler
are called.

void Free (t_Position o_pos);

Frees memory block pointed to by o_pos. o_pos may be zero.

void * AddrOf (t_Position o_pos);

Returns the memory address of position value o_pos. If o_pos is zero it returns the null pointer.

t_Position PosOf (void * pv_adr);

Returns the position value of memory address pv_adr. This method is not supported by all store classes.

t_Size SizeOf (t_Position o_pos);

Returns exactly the size of the memory block pointed to by o_pos. This method is not supported by all
store classes.

t_Size RoundedSizeOf (t_Position o_pos);

Returns the rounded size of the memory block pointed to by o_pos. This method is not supported by all
store classes.

bool CanFreeAll ();

Returns true if the store class can free all allocated memory blocks.

void FreeAll ();

Frees all allocated memory blocks. This method is not supported by all store classes.

1.2.2 Global Stores (tuning/defs.hpp)

Stores are used very differently within the Spirick Tuning library. The three dynamic stores (see following
sections) are accessed by generated global wrapper classes (using a global store object). For example, in
most cases there is no need to create multiple round stores. The parameters of one global round store
object may be applied to the entire program.

Spirick Tuning Reference Manual Page 11

Numerous class templates take a store class as parameter and create a store instance. For example,
every list container allocates the node memory by its own store object. A block list container has a local
block store. A normal list container uses a wrapper class to access a global store object.

There are four wrapper classes for each global store object. Each wrapper class has its own t_Size data
type. All methods of a wrapper class are declared static. They can be called directly (class::method, e.g.
in gct_Block) or by a wrapper object (object.method, e.g. in gct_DList).

A method of a wrapper class calls the appropriate method of the global store object. If the position
value is equal to the memory address, then the AddrOf method is implemented inline in the wrapper
class.

Each global store object has its own global access function. The global object is created in the first call
of the access function. This technique ensures safe access to store objects from constructors of global
C++ objects. A global store object may be created directly by a global Create function.

Global store objects are not destroyed automatically during program termination. This technique ensures
safe access to store objects from destructors of global C++ objects. The destruction of global store
objects is not necessary. They manage raw memory blocks, and this memory is released by the OS
automatically. A global store object may be destroyed directly by a global Delete function.

Note that a heap walker may report the global store objects as memory leaks at the end of the program.
This problem can be avoided by explicitly deleting these objects. Please ensure that a global store object
is not used after deleting it.

GLOBAL_STORE_DCLS(t_store, Obj, inl_or_stat)

This macro appears at the end of the store class definition. t_store is the original store class. Obj is a
small identifier for name generation. Multiple wrapper classes are generated. inl_or_stat determines
whether the AddrOf and PosOf methods are implemented inline or static. The macro usage

GLOBAL_STORE_DCLS (ct_AnyStore, My, INLINE)

contains the following declarations:

void CreateMyStore ();
void DeleteMyStore ();
ct_AnyStore * GetMyStore ();
class ct_My_Store;
class ct_My8Store;
class ct_My16Store;
class ct_My32Store;

GLOBAL_STORE_DEFS(t_store, Obj, inl_or_stat)

This macro appears in the store class implementation file and contains the same parameters as
GLOBAL_STORE_DCLS. The generated code contains the implementation of the wrapper class methods.

1.2.3 Wrapper Class Example

The entire declaration of the wrapper class ct_My16Store read as follows:

class ct_My16Store
 {
public:
 typedef t_UInt16 t_Size;
 typedef ct_AnyStore::t_Position t_Position;
 typedef ct_AnyStore t_Store;

 static void Swap (ct_My16Store &);
 static t_UInt StoreInfoSize ();

Spirick Tuning Reference Manual Page 12

 static t_UInt MaxAlloc ();
 static t_Position Alloc (t_Size o_size);
 static t_Position Realloc (t_Position o_pos, t_Size o_size);
 static void Free (t_Position o_pos);
 static inline void * AddrOf (t_Position o_pos) { return o_pos; }
 static inline t_Position PosOf (void * pv_adr) { return pv_adr; }
 static t_Size SizeOf (t_Position o_pos);
 static t_Size RoundedSizeOf (t_Position o_pos);
 static bool CanFreeAll ();
 static void FreeAll ();
 static ct_AnyStore * GetStore ();
 };

The macro GLOBAL_STORE_DEFS generates three global access functions. For performance reasons, the
construction and destruction of global store objects are not thread-safe. These actions should be done
at program startup/termination in single-thread mode.

static ct_AnyStore * pco_MyStore;
void CreateMyStore ()
 {
 if (pco_MyStore == 0)
 pco_MyStore = new ct_AnyStore;
 }
void DeleteMyStore ()
 {
 if (pco_MyStore != 0)
 {
 delete pco_MyStore;
 pco_MyStore = 0;
 }
 }
ct_AnyStore * GetMyStore ()
 {
 if (pco_MyStore == 0)
 CreateMyStore ();
 return pco_MyStore;
 }

The generated definition of ct_My16Store:: Alloc read as follows:

ct_My16Store::t_Position
ct_My16Store::Alloc (t_Size o_size)
 { return GetMyStore ()-> Alloc (o_size); }

1.3 Dynamic Stores

1.3.1 Standard Store (tuning/std/store.hpp)

ct_StdStore is the simplest store class. The global C functions of the system interface are mapped to the
C++ class interface. For example, the Alloc method calls the global tl_Alloc function.

Class Declaration
class ct_StdStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;
 static inline void Swap (ct_StdStore & co_swap);

Spirick Tuning Reference Manual Page 13

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 static inline t_Position Alloc (t_Size o_size);
 static inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 static inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 static inline void FreeAll ();
 };

inline ct_StdStore::t_Position ct_StdStore::Alloc (t_Size o_size)
 { return tl_Alloc (o_size); }

Special Cases, Wrapper Classes
The following methods are not supported by standard store: SizeOf, RoundedSizeOf and FreeAll. The class
ct_StdStore relies on the system interface and uses reserve memory. Debugging tools and heap walkers
of the C standard library can be used together with ct_StdStore.

The following declarations of access functions and wrapper classes are generated in the standard store
header file:

void CreateStdStore ();
void DeleteStdStore ();
ct_StdStore * GetStdStore ();
class ct_Std_Store;
class ct_Std8Store;
class ct_Std16Store;
class ct_Std32Store;

1.3.2 Round Store (tuning/rnd/store.hpp)

ct_RndStore uses the system interface like ct_StdStore. Additionally, it rounds block sizes before calling
global functions. The private method Round calculates rounded values.

Class Declaration
class ct_RndStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 ct_RndStore ();
 void Swap (ct_RndStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 inline t_Position Alloc (t_Size o_size);
 inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 static inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);

Spirick Tuning Reference Manual Page 14

 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 static inline void FreeAll ();
 };

inline ct_RndStore::t_Position ct_RndStore::Alloc (t_Size o_size)
 { return tl_Alloc (Round (o_size)); }

Block size rounding minimizes the number of reallocations and prevents memory fragmentation. Round
store rounds block sizes to the next power of two. If the heap utilization is very high, then the chain
store should be used.

The efficiency of the round store depends on the C standard library implementation. A rule of thumb is:
The round store increases performance in older compiler environments. Newer compilers have their own
heap optimizations and will disturb the round store. The chain store always increases the memory
management performance.

Special Cases, Wrapper Classes
The following methods are not supported by round store: SizeOf, RoundedSizeOf and FreeAll. The class
ct_RndStore relies on the system interface and uses reserve memory. Debugging tools and heap walkers
of the C standard library can be used together with ct_RndStore.

The following declarations of access functions and wrapper classes are generated in the round store
header file:

void CreateRndStore ();
void DeleteRndStore ();
ct_RndStore * GetRndStore ();
class ct_Rnd_Store;
class ct_Rnd8Store;
class ct_Rnd16Store;
class ct_Rnd32Store;

1.3.3 Chain Store (tuning/chn/store.hpp)

The chain store is a significant improvement over the round store. The focus is on programs with heavy
heap utilization. ct_ChnStore has several optimization techniques to improve performance. The chain store
prevents memory fragmentation. In most cases, the total amount of memory will decrease. Furthermore,
there are no disadvantages for programs with low heap utilization.

Class Declaration
class ct_ChnStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 ct_ChnStore ();
 ~ct_ChnStore ();
 void Swap (ct_ChnStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

Spirick Tuning Reference Manual Page 15

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 inline t_Size RoundedSizeOf (t_Position o_pos);

 static bool CanFreeAll ();
 static void FreeAll ();

 unsigned GetMaxChainExp ();
 void SetMaxChainExp (unsigned u_exp);
 t_UInt GetEntries ();
 t_UInt GetSize ();
 t_UInt QueryAllocEntries ();
 t_UInt QueryAllocSize ();
 t_UInt QueryFreeEntries ();
 t_UInt QueryFreeSize ();
 void FreeUnused ();
 };

Chain store rounds block sizes like round store to the next power of two. Additionally, ct_ChnStore has
its own memory management. For each of the few block sizes chain store contains a chain of free
memory blocks. If ct_ChnStore allocates a new memory block, then it looks into the appropriate chain for
a free block. If ct_ChnStore frees a memory block, then it puts the block into the appropriate chain.

Chain store uses the first sizeof (t_UInt) bytes of the memory block for management information. The
methods SizeOf and RoundedSizeOf are implemented. Furthermore, it is possible to calculate memory
usage statistics.

If the application allocates and frees nearly the same amount of memory, then the chain store is very
efficient. When a large number of memory blocks are freed, the chain store will contain a large amount
of unused memory. In this case, the FreeUnused method will give the memory back to the C standard
library.

With increasing block sizes the probability of memory fragmentation decreases. Therefore the free
chains may be limited by a maximum value. Above this value chain store works like a round store with
step divider one (no free chains are used).

ct_ChnStore contains additional methods for memory usage statistics. The private attributes are protected
against multiple thread access.

Additional Methods
unsigned GetMaxChainExp ();

Returns the max. exponent for free chains.

void SetMaxChainExp (unsigned u_exp);

Sets the max. exponent for free chains. Default value is 22 (2^22 = 4 MB).

t_UInt GetEntries ();

Returns the number of used and unused memory blocks.

t_UInt GetSize ();

Returns the total size of used and unused memory blocks.

Spirick Tuning Reference Manual Page 16

t_UInt QueryAllocEntries ();

Calculates the number of used memory blocks.

t_UInt QueryAllocSize ();

Calculates the total size of used memory blocks.

t_UInt QueryFreeEntries ();

Calculates the number of unused memory blocks.

t_UInt QueryFreeSize ();

Calculates the total size of unused memory blocks.

void FreeUnused ();

Gives all unused memory blocks back to the C standard library.

Special Cases, Wrapper Classes
The FreeAll method is not supported by chain store. The class ct_ChnStore relies on the system interface
and uses reserve memory. Debugging tools and heap walkers of the C standard library can be used
together with ct_ChnStore. Notice that free chain blocks appear as used memory and that the first four or
eight bytes of memory blocks are used by chain store.

The following declarations of access functions and wrapper classes are generated in the chain store
header file:

void CreateChnStore ();
void DeleteChnStore ();
ct_ChnStore * GetChnStore ();
class ct_Chn_Store;
class ct_Chn8Store;
class ct_Chn16Store;
class ct_Chn32Store;

1.3.4 Global new and delete operators (tuning/newdel.cpp)

The file 'tuning/newdel.cpp' contains implementations of the global new and delete operators using the
chain store. Sometimes this feature has side effects with other libraries. Therefore it must be explicitly
enabled with the TL_NEWDEL macro.

void * operator new (size_t u_size)
 {
 return GetChnStore ()-> Alloc (u_size);
 }

void operator delete (void * pv)
 {
 GetChnStore ()-> Free (pv);
 }

void * operator new [] (size_t u_size)
 {
 return GetChnStore ()-> Alloc (u_size);
 }

void operator delete [] (void * pv)
 {
 GetChnStore ()-> Free (pv);
 }

Spirick Tuning Reference Manual Page 17

1.4 Block

1.4.1 Block Interface

Numerous classes within the Spirick Tuning library use dynamic memory blocks to store their data. The
block interface is a simple object oriented concept of managing a single memory block. To increase
performance there is no common base class with virtual functions. However, all block classes share a
common interface. So it's easy to switch between multiple block implementations. Block classes are
used as template parameters of strings, arrays and block stores.

Class Declaration
class ct_AnyBlock
 {
public:
 typedef t_UInt t_Size;

 ct_AnyBlock ();
 ct_AnyBlock (const ct_AnyBlock & co_init);
 ~ct_AnyBlock ();
 ct_AnyBlock & operator = (const ct_AnyBlock & co_asgn);
 void Swap (ct_AnyBlock & co_swap);

 static t_UInt GetMaxByteSize ();
 t_Size GetByteSize () const;
 void SetByteSize (t_Size o_newSize);
 void * GetAddr () const;
 };

Data Types
typedef t_UInt t_Size;

The nested type t_Size describes the size of the memory block, examples are t_UInt, t_UInt8, t_UInt16
and t_UInt32. If t_Size is defined as t_UInt8, the maximum size of the memory block will be 255 bytes.
An attribute of type t_Size will consume one byte.

Constructors, Destructor, Assignment, Swap
Every block class contains a constructor, a copy constructor, a destructor and an assignment operator.

ct_AnyBlock ();

Initializes an empty block object.

ct_AnyBlock (const ct_AnyBlock & co_init);

Initializes a block object and copies the input data into its own memory block (deep copy).

~ct_AnyBlock ();

Releases the allocated memory.

ct_AnyBlock & operator = (const ct_AnyBlock & co_asgn);

Copies the input data into its own memory block (deep copy).

Spirick Tuning Reference Manual Page 18

void Swap (ct_AnyBlock & co_swap);

Swaps the values of the two objects.

Additional Methods
static t_UInt GetMaxByteSize ();

Returns the maximum size of the memory block.

t_Size GetByteSize () const;

Returns the current size of the memory block.

void SetByteSize (t_Size o_newSize);

Reallocates the memory block to size o_newSize.

void * GetAddr () const;

Returns the memory address of the block or the null pointer if size is zero.

The following sections describe different implementations of the block interface.

1.4.2 Simple Block (tuning/block.h)

The class template gct_Block is the standard implementation of the block interface. The implementation
consists of the base class gct_BlockBase, the block class gct_Block and the helper classes
gct_EmptyBaseBlock and gct_ObjectBaseBlock.

Base Class
The block base class contains attributes of the t_Position and t_Size data types of the corresponding
store class. The size of the object depends on these data types. t_staticStore must have the common
store interface. All methods of t_staticStore must be declared static, examples are ct_Rnd16Store and
ct_Chn32Store. The block base class can be used for different purposes:

1. If the t_Position and t_Size data types have different sizes (e.g. void * and t_UInt16), then the compiler
will insert padding bytes. Note that it is not possible to use padding bytes of a base class in a derived
class. For optimal memory utilization base classes should be designed without padding bytes. The
sample program TBlock contains a modified base class.

2. Sometimes a block class should be derived from a special base class. Therefore the gct_BlockBase
template contains a t_base parameter.

Note that the Swap method is declared in the block base class and not in the block class.

Template Declaration
template <class t_staticStore, class t_base>
 class gct_BlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;
 t_Size o_Size;

Spirick Tuning Reference Manual Page 19

 public:
 inline void Swap (gct_BlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Block Class
The template parameter t_blockBase must at least contain the same data types, attributes and methods
as the gct_BlockBase template.

Template Declaration
template < class t_blockBase>
 class gct_Block: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

 inline gct_Block ();
 inline gct_Block (const gct_Block & co_init);
 inline ~gct_Block ();
 inline gct_Block & operator = (const gct_Block & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

The methods of gct_Block are very simple. The store methods are called directly.

template <class t_staticStore>
 inline void gct_Block <t_staticStore>::SetByteSize (t_Size o_newSize)
 {
 o_Size = o_newSize;
 o_Pos = t_staticStore::Realloc (o_Pos, o_Size);
 }

Helper Classes
The top-level base class may be ct_Empty or ct_Object. Two class templates are predefined.

Template Declaration
template <class t_staticStore>
 class gct_EmptyBaseBlock:
 public gct_Block <gct_BlockBase <t_staticStore, ct_Empty> >
 {
 };

Template Declaration
template <class t_staticStore>
 class gct_ObjectBaseBlock:
 public gct_Block <gct_BlockBase <t_staticStore, ct_Object> >
 {
 };

Spirick Tuning Reference Manual Page 20

1.4.3 Mini Block (tuning/miniblock.h)

A gct_Block object contains a size and a position attribute. If the store class supports the SizeOf method,
then the size attribute is redundant. The gct_MiniBlock template uses the SizeOf method instead of a size
attribute. The implementation consists of the base class gct_MiniBlockBase, the block class gct_MiniBlock
and the helper classes gct_EmptyBaseMiniBlock and gct_ObjectBaseMiniBlock.

Base Class
The class template gct_MiniBlockBase is similar to gct_BlockBase (see above).

Template Declaration
template <class t_staticStore, class t_base>
 class gct_MiniBlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;

 public:
 inline void Swap (gct_MiniBlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Block Class
The template parameter t_blockBase must at least contain the same data types, attributes and methods
as the gct_MiniBlockBase template.

Template Declaration
template <class t_blockBase>
 class gct_MiniBlock: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

 inline gct_MiniBlock ();
 inline gct_MiniBlock (const gct_MiniBlock & co_init);
 inline ~gct_MiniBlock ();
 inline gct_MiniBlock & operator = (const gct_MiniBlock & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

A mini block object consumes less memory than a block object. Note that some methods are slightly
slower than the corresponding block methods.

template <class t_blockBase>
 inline gct_MiniBlock <t_blockBase>::t_Size
 gct_MiniBlock <t_blockBase>::GetByteSize () const
 {
 return (t_Size) t_staticStore::SizeOf (o_Pos);

Spirick Tuning Reference Manual Page 21

 }

Helper Classes
The top-level base class may be ct_Empty or ct_Object. Two class templates are predefined.

Template Declaration
template <class t_staticStore>
 class gct_EmptyBaseMiniBlock:
 public gct_MiniBlock <gct_MiniBlockBase <t_staticStore, ct_Empty> >
 {
 };

Template Declaration
template <class t_staticStore>
 class gct_ObjectBaseMiniBlock:
 public gct_MiniBlock <gct_MiniBlockBase <t_staticStore, ct_Object> >
 {
 };

1.4.4 Reserve Block (tuning/resblock.h)

The class template gct_ResBlock is similar to gct_Block. In addition to the current size of the block, a
reserve block contains a minimum size parameter. In some use cases the number of reallocations can be
reduced by using the minimum size. The implementation consists of the base class gct_ResBlockBase, the
block class gct_ResBlock and the helper classes gct_EmptyBaseResBlock and gct_ObjectBaseResBlock.

Base Class
The class template gct_ResBlockBase is similar to gct_BlockBase (see above).

Template Declaration
template <class t_staticStore, class t_base>
 class gct_ResBlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;
 t_Size o_Size;
 t_Size o_MinSize;

 public:
 inline void Swap (gct_ResBlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Block Class
The template parameter t_blockBase must at least contain the same data types, attributes and methods
as the gct_ResBlockBase template.

Spirick Tuning Reference Manual Page 22

Template Declaration
template <class t_blockBase>
 class gct_ResBlock: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

 inline gct_ResBlock ();
 inline gct_ResBlock (const gct_ResBlock & co_init);
 inline ~gct_ResBlock ();
 inline gct_ResBlock & operator = (const gct_ResBlock & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;

 inline t_Size GetMinByteSize () const;
 inline t_Size GetAllocByteSize () const;
 inline void SetMinByteSize (t_Size o_newSize);
 };

Additional Methods
t_Size GetMinByteSize () const;

Returns the minimum size of the block.

t_Size GetAllocByteSize () const;

Returns the currently allocated size of the block.

void SetMinByteSize (t_Size o_newSize);

Sets the minimum size of the block to o_newSize.

Helper Classes
The top-level base class may be ct_Empty or ct_Object. Two class templates are predefined.

Template Declaration
template <class t_staticStore>
 class gct_EmptyBaseResBlock:
 public gct_ResBlock <gct_ResBlockBase <t_staticStore, ct_Empty> >
 {
 };

Template Declaration
template <class t_staticStore>
 class gct_ObjectBaseResBlock:
 public gct_ResBlock <gct_ResBlockBase <t_staticStore, ct_Object> >
 {
 };

Spirick Tuning Reference Manual Page 23

1.4.5 Fixed Sized Block (tuning/fixblock.h)

The gct_FixBlock template eliminates the overhead of dynamic memory management. It is useful for
block sizes from zero to 50 bytes. The block size is limited to a constant value. A gct_FixBlock object
does not allocate dynamic memory. It contains a fixed sized byte array.

Template Declaration
template <class t_size, t_UInt u_fixSize>
 class gct_FixBlock
 {
 public:
 typedef t_size t_Size;

 protected:
 t_Size o_Size;
 char ac_Block [u_fixSize];

 public:
 inline gct_FixBlock ();
 inline gct_FixBlock (const gct_FixBlock & co_init);
 inline gct_FixBlock & operator = (const gct_FixBlock & co_asgn);
 void Swap (gct_FixBlock & co_swap);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Note that the alignment of the internal char array depends on the t_size parameter.

1.4.6 Null Data Block (tuning/nulldatablock.h)

A null-terminated string consumes memory even if it is empty (for the null character). Due to rounding
of block sizes and memory management overhead, 8 or 16 bytes are consumed. In some use cases this
may lead to a significant amount of memory. The class template gct_NullDataBlock uses a static allocated
null-value object. If the block size is 1, then no dynamic memory ist allocated.

The template parameter t_block must contain the block interface.

Template Declaration
template <class t_block, class t_null>
 class gct_NullDataBlock: public t_block
 {
 public:
 typedef t_block::t_Size t_Size;

 private:
 static t_null o_NullData;

 public:
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Note that the last character of the block must contain the null value, no other values are allowed.

Spirick Tuning Reference Manual Page 24

1.4.7 Character Block (tuning/charblock.h)

The class template gct_CharBlock is an extension of the common block interface. It contains several
useful methods. The common block is the base class of the character block. The template parameter
t_char may be char or wchar_t. To avoid any possibility of confusion, byte-oriented methods are declared
private.

Base Class
ct_AnyBlock (see above 'Block Interface')

Template Declaration
template <class t_block, class t_char>
 class gct_CharBlock: public t_block
 {
 public:
 inline t_Size GetMaxCharSize () const;
 inline t_Size GetCharSize () const;
 inline void SetCharSize (t_Size o_size);
 inline void IncCharSize (t_Size o_inc);
 inline void DecCharSize (t_Size o_dec);
 inline t_char * GetRawAddr () const;
 inline t_char * GetRawAddr (t_Size o_pos) const;
 inline t_char * GetCharAddr () const;
 inline t_char * GetCharAddr (t_Size o_pos) const;

 t_char * AppendChars (t_Size o_len);
 t_char * InsertChars (t_Size o_pos, t_Size o_count);
 t_char * DeleteChars (t_Size o_pos, t_Size o_count);
 inline t_char * FillChars (t_Size o_pos, t_Size o_count, t_char c_fill = (t_char) 0);

 inline void AssignChars (const t_char * pc_asgn, t_Size o_len);
 inline void AppendChars (const t_char * pc_app, t_Size o_len);
 inline void InsertChars (t_Size o_pos, const t_char * pc_ins, t_Size o_len);
 void ReplaceChars (t_Size o_pos, t_Size o_delLen,
 const t_char * pc_ins, t_Size o_insLen);

 inline t_Size GetDefaultPageSize () const;
 inline void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);
 };

Methods
t_Size GetMaxCharSize ();

Returns the maximum character size of the memory block.

t_Size GetCharSize () const;

Returns the current character size of the memory block.

void SetCharSize (t_Size o_size);

Reallocates the memory block to o_size characters.

void IncCharSize (t_Size o_inc);

Increases block size by o_inc characters.

void DecCharSize (t_Size o_dec);

Decreases block size by o_dec characters. o_dec must be less than or equal to GetCharSize ().

Spirick Tuning Reference Manual Page 25

t_char * GetRawAddr () const;

Returns the memory address of the block or the null pointer if size is zero.

t_char * GetRawAddr (t_Size o_pos) const;

Returns the memory address of the character at position o_pos. o_pos must be less than or equal to
GetCharSize ().

t_char * GetCharAddr () const;

Returns the memory address of the block. Size must be greater than zero.

t_char * GetCharAddr (t_Size o_pos) const;

Returns the memory address of the character at position o_pos. o_pos must be less than GetCharSize ().

t_char * AppendChars (t_Size o_len);

Increases block size by o_len characters. Returns the memory address of the character at position
GetCharSize () - o_len.

t_char * InsertChars (t_Size o_pos, t_Size o_len);

Increases block size by o_len characters and moves memory from position o_pos to position o_pos + o_len.
Returns the memory address of the character at position o_pos.

t_char * DeleteChars (t_Size o_pos, t_Size o_len);

Moves memory from position o_pos + o_len to position o_pos and decreases block size by o_len
characters. Returns the memory address of the character at position o_pos.

t_char * FillChars (t_Size o_pos, t_Size o_len, t_char c_fill = (t_char) 0);

Sets o_len characters at position o_pos to the character c_fill. Returns the memory address of the
character at position o_pos.

void AssignChars (const t_char * pc_asgn, t_Size o_len);

Reallocates the memory block to o_len characters and copies the first o_len characters from pc_asgn to
the memory block.

void AppendChars (const t_char * pc_app, t_Size o_len);

Increases block size by o_len characters and copies the first o_len characters from pc_app to position
GetCharSize () - o_len.

void InsertChars (t_Size o_pos, const t_char * pc_ins, t_Size o_len);

Increases block size by o_len characters, moves memory from position o_pos to position o_pos + o_len
and copies the first o_len characters from pc_ins to position o_pos.

void ReplaceChars (t_Size o_pos, t_Size o_delLen, const t_char * pc_ins, t_Size o_insLen);

Replaces o_delLen characters at position o_pos by the first o_insLen characters from pc_ins. Block size may
be changed.

t_Size GetDefaultPageSize () const;
void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);

These methods make gct_CharBlock compatible with the page block interface.

1.4.8 Item Block (tuning/itemblock.h)

The class template gct_ItemBlock is smilar to gct_CharBlock, but instead of a char type parameter, an
arbitrary item size parameter is used. The implementation consists of the item block class gct_ItemBlock

Spirick Tuning Reference Manual Page 26

and the helper classes gct_VarItemBlock and gct_FixItemBlock. To avoid any possibility of confusion, byte-
oriented methods are declared private.

Base Class
ct_AnyBlock (see above 'Block Interface')

Template Declaration
template <class t_block>
 class gct_ItemBlock: public t_block
 {
 public:
 inline t_Size GetFixSize () const;
 inline t_Size GetMaxItemSize () const;
 inline t_Size GetItemSize () const;
 inline void SetItemSize (t_Size o_size);
 inline void IncItemSize1 ();
 inline void DecItemSize1 ();
 inline void IncItemSize (t_Size o_inc);
 inline void DecItemSize (t_Size o_dec);
 inline void * GetItemAddr (t_Size o_pos) const;

 void * AppendItems (t_Size o_count);
 void * InsertItems (t_Size o_pos, t_Size o_count);
 void * DeleteItems (t_Size o_pos, t_Size o_count);

 inline t_Size GetDefaultPageSize () const;
 inline void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);
 };

Methods
t_Size GetFixSize () const;

Returns the byte size of a single item.

t_Size GetMaxItemSize () const;

Returns the maximum item size of the memory block.

t_Size GetItemSize () const;

Returns the current item size of the memory block.

void SetItemSize (t_Size o_size) const;

Reallocates the memory block to o_size items.

void IncItemSize1 ();

Increases block size by 1 item.

void DecItemSize1 ();

Decreases block size by 1 item.

void IncItemSize (t_Size o_inc);

Increases block size by o_inc items.

void DecItemSize (t_Size o_dec);

Decreases block size by o_dec items. o_dec must be less than or equal to GetItemSize ().

Spirick Tuning Reference Manual Page 27

void * GetItemAddr (t_Size o_pos) const;

Returns the memory address of the item at position o_pos. o_pos must be less than GetItemSize ().

void * AppendItems (t_Size o_count);

Increases block size by o_count items. Returns the memory address of the first new item at the end of
the block.

void * InsertItems (t_Size o_pos, t_Size o_count);

Increases block size by o_count items and moves memory from position o_pos to position o_pos + o_count.
Returns the memory address of the item at position o_pos.

void * DeleteItems (t_Size o_pos, t_Size o_count);

Moves memory from position o_pos + o_count to position o_pos and decreases block size by o_count items.
Returns the memory address of the item at position o_pos.

t_Size GetDefaultPageSize () const;
void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);

These methods make gct_ItemBlock compatible with the page block interface.

Helper Classes
The item size can be configured at compile time or at runtime. The class template gct_VarItemBlock
enables runtime configuration by using the method AlignPageSize. A typical use case is the block store.

Template Declaration
template <class t_block>
 class gct_VarItemBlock:
 public gct_ItemBlock <gct_VarItemBlockBase <t_block> >
 {
 };

The class template gct_FixItemBlock contains the parameter o_itemSize for compile time configuration. A
typical use case is the array container.

Template Declaration
template <class t_block, t_UInt o_itemSize>
 class gct_FixItemBlock:
 public gct_ItemBlock <gct_FixItemBlockBase <t_block, o_itemSize> >
 {
 };

1.4.9 Page Block (tuning/pageblock.hpp)

A page block uses equal-sized memory pages instead of a continuous memory block. This concept
provides the following advantages:

1. Lower number of memory allocations and releases.
2. Lower memory fragmentation.
3. No memory copying while changing the block size.
4. All memory addresses remain valid while changing the block size.

This special implementation uses a class with virtual functions instead of template parameters. The page
block uses a helper block for managing pointers to the pages. Different store classes can be used for
the management block and the data pages.

Spirick Tuning Reference Manual Page 28

The size of the pointer management block may be fixed or variable. If the size is fixed, then no mutex is
required for the methods GetCharAddr and GetItemAddr in a multi-threaded environment. Note that a fixed
sized management block leads to a maximum size of the entire page block.

The implementation of the page block consists of the base class gct_PageBlockBase with some virtual
methods and the derived class ct_PageBlock with access to two store objects. The page block class
contains some common block methods and additionally also the methods of gct_CharBlock and
gct_ItemBlock.

Note that the memory location of a single item must not overlap a page boundary. Therefore the page
block must be initialized with the method AlignPageSize while the size is zero.

Class Declaration
class ct_PageBlockBase
 {
public:
 typedef t_UInt t_Size;

protected:
 void SetByteSize0 ();
 virtual void * AllocPtr (t_Size o_size) = 0;
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size) = 0;
 virtual void * AllocData (t_Size o_size) = 0;
 virtual void FreeData (void * pv_mem) = 0;
 virtual void LastPageWarning () { }
 virtual void LastPageError () { }

public:
 // Block
 ct_PageBlockBase ();
 inline ct_PageBlockBase (const ct_PageBlockBase & co_init);
 virtual ~ct_PageBlockBase () { }
 inline ct_PageBlockBase & operator = (const ct_PageBlockBase & co_asgn);
 void Swap (ct_PageBlockBase & co_swap);

 // CharBlock
 inline t_Size GetMaxCharSize () const;
 inline t_Size GetCharSize () const;
 inline void SetCharSize (t_Size o_size);
 inline void IncCharSize (t_Size o_inc);
 inline void DecCharSize (t_Size o_dec);
 inline char * GetRawAddr () const;
 inline char * GetRawAddr (t_Size o_pos) const;
 inline char * GetCharAddr () const;
 inline char * GetCharAddr (t_Size o_pos) const;

 char * AppendChars (t_Size o_count);
 char * InsertChars (t_Size o_pos, t_Size o_count);
 char * DeleteChars (t_Size o_pos, t_Size o_count);
 char * FillChars (t_Size o_pos, t_Size o_count,
 char c_fill = '\0');

 // ItemBlock
 inline t_Size GetFixSize () const;
 inline t_Size GetMaxItemSize () const;
 inline t_Size GetItemSize () const;
 inline void SetItemSize (t_Size o_size);
 inline void IncItemSize1 ();
 inline void DecItemSize1 ();
 inline void IncItemSize (t_Size o_inc);
 inline void DecItemSize (t_Size o_dec);
 inline void * GetItemAddr (t_Size o_pos) const;

Spirick Tuning Reference Manual Page 29

 inline void * AppendItems (t_Size o_count);
 inline void * InsertItems (t_Size o_pos, t_Size o_count);
 inline void * DeleteItems (t_Size o_pos, t_Size o_count);

 // PageBlock only Methods
 inline t_Size GetDefaultPageSize () const;
 inline t_Size GetFixPagePtrs () const;
 void SetFixPagePtrs (t_Size o_ptrs);
 void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);
 inline t_Size GetPageSize () const;
 inline t_Size GetRoundedSize () const;
 };

Additional Methods
void LastPageWarning ();

This virtual method will be called if the pointer management block is fixed sized and the last data page
was allocated. This implies that only a single data page is available.

void LastPageError ();

This virtual method will be called if the pointer management block is fixed sized and the last data page
does not contain any more free space.

The behaviour of this method is similar to the overflow handler (see above tl_SetOverflowHandler). This
method must not throw C++ exceptions. Exceptions from LastPageError are not handled by the library
and lead to inconsistent objects. Afterwards the program is terminated by the function tl_EndProcess.

t_Size GetDefaultPageSize () const;

Returns a default value for the size of a data page.

t_Size GetFixPagePtrs () const;

Returns the number of pointers in the management block (i.e. the max. number of data pages). The
return value zero means that the size of the management block is variable.

void SetFixPagePtrs (t_Size o_ptrs);

Sets the number of pointers in the management block (i.e. the max. number of data pages) to o_ptrs.
While calling this method, the block size must be zero.

void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);

The size of data pages is calculated so that it is a multiple of o_fixSize and greater than or equal to
o_pageSize. While calling this method, the block size must be zero.

t_Size GetPageSize () const;

Returns the size of a data page.

t_Size GetRoundedSize () const;

Returns the product of the page size and the number of pages.

Class Declaration
class ct_PageBlock: public ct_PageBlockBase
 {
protected:
 virtual void * AllocPtr (t_Size o_size);
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size);
 virtual void * AllocData (t_Size o_size);
 virtual void FreeData (void * pv_mem);

Spirick Tuning Reference Manual Page 30

public:
 ~ct_PageBlock ();
 };

Methods
void * AllocPtr (t_Size o_size);

Allocate memory for the pointer management block.

void * ReallocPtr (void * pv_mem, t_Size o_size);

Reallocate memory for the pointer management block.

void * AllocData (t_Size o_size);

Allocate a single data page.

void FreeData (void * pv_mem);

Release a single data page.

~ct_PageBlock ();

Within the destructor of the derived class all memory must be released. The destructor of the base class
has no access to the virtual methods implemented in the derived class.

1.4.10 Block Instances (tuning/xxx/block.h)

Some template instances are predefined to easily use the block interface. The macro BLOCK_DCLS(Obj)
generates for each wrapper class of a global store one block class.

The macro

BLOCK_DCLS (Any)

expands to:

class ct_Any_Block:
 public gct_EmptyBaseBlock <ct_Any_Store> { };
class ct_Any8Block:
 public gct_EmptyBaseBlock <ct_Any8Store> { };
class ct_Any16Block:
 public gct_EmptyBaseBlock <ct_Any16Store> { };
class ct_Any32Block:
 public gct_EmptyBaseBlock <ct_Any32Store> { };

Every directory of a global store contains a file 'block.h'.

The file 'tuning/std/block.h' contains the following declarations:

class ct_Std_Block;
class ct_Std8Block;
class ct_Std16Block;
class ct_Std32Block;

The file 'tuning/rnd/block.h' contains the following declarations:

class ct_Rnd_Block;
class ct_Rnd8Block;
class ct_Rnd16Block;
class ct_Rnd32Block;

Spirick Tuning Reference Manual Page 31

The file 'tuning/chn/block.h' contains the following declarations:

class ct_Chn_Block;
class ct_Chn8Block;
class ct_Chn16Block;
class ct_Chn32Block;

1.5 Special Stores

1.5.1 Block Store (tuning/blockstore.h)

A block store uses an item block (see above 'Item Block') for compact storage of smaller, equal-sized
memory blocks. The rounding and management overhead of a dynamic memory management is
significantly reduced. Typical use cases are list containers. All nodes of a list container have the same
size.

The first template parameter t_itemBlock must at least contain the item block interface, e.g.
gct_VarItemBlock <ct_Chn16Block> or ct_PageBlock. The second template parameter t_charBlock must at least
contain the character block interface, e.g. gct_CharBlock <ct_Chn32Block, char>. It is used for temporary
data inside of the method FreeUnused.

Base Class
t_itemBlock (see above 'Item Block')

Template Declaration
template <class t_itemBlock, class t_charBlock>
 class gct_BlockStore: public t_itemBlock
 {
 public:
 typedef t_itemBlock::t_Size t_Size;
 typedef t_itemBlock::t_Size t_Position;

 inline gct_BlockStore ();

 inline t_UInt StoreInfoSize () const;
 inline t_UInt MaxAlloc () const;

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 inline void * AddrOf (t_Position o_pos) const;
 inline t_Position PosOf (void * pv_adr) const;

 inline t_Size SizeOf (t_Position o_pos) const;
 inline t_Size RoundedSizeOf (t_Position o_pos) const;

 inline bool CanFreeAll () const;
 inline void FreeAll ();

 void SetSortedFree (bool b);
 void SetPageSize (t_Size o_size);
 inline t_Position LastIdx () const;
 inline bool HasFree () const;
 void FreeUnused ();
 };

Spirick Tuning Reference Manual Page 32

Size and position data types of a block store are the same as in the base class. Position values are
indices beginning with 1, 2, 3 etc. The position value zero is invalid per definition (see above 'Store
Interface').

Note that the memory addresses of block store entries can change if the size of the underlying item
block changes i.e. if the block store methods Alloc, Realloc or Free are called. Note also that the memory
addresses of block store entries remain valid if the parameter t_itemBlock equals ct_PageBlock.

The block store implementation uses two different algorithms to manage the internal list of free blocks.
Algorithm 1 is optimized for speed, it uses an unsorted list. Algorithm 2 is optimized for size, it uses an
sorted list. By default, algorithm 1 is active. The method FreeUnused sorts the list of free blocks and tries
to reduce the size of the underlying item block. The method SetSortedFree can be used to switch
between algorithm 1 and 2.

The class template gct_BlockStore does not support the SizeOf method. The item size is calculated in the
first call of Alloc or Realloc. In subsequent calls of Alloc or Realloc, the requested size must be less than
or equal to the item size.

Additional Methods
void SetSortedFree (bool b);

Select an algorithm for internal free list management.

void SetPageSize (t_Size o_size);

If the parameter t_itemBlock equals ct_PageBlock, then this method sets the page size of the underlying
page block.

t_Position LastIdx () const;

Returns the maximun position value (allocated or free) or zero, if the block store is empty.

bool HasFree () const;

Returns true, if the internal free list contains at least one element.

void FreeUnused ();

Sorts the list of free blocks and tries to reduce the size of the underlying item block.

1.5.2 Block Store Instances (tuning/xxx/blockstore.h)

Some template instances are predefined to easily use the block store interface. The macro
BLOCK_STORE_DCLS(Obj) generates for each wrapper class of a global store one block store class.

The macro

BLOCK_STORE_DCLS (Any)

expands to:

class ct_Any_BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any_Block>, gct_CharBlock <ct_Any_Block, char> > { };
class ct_Any8BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any8Block>, gct_CharBlock <ct_Any8Block, char> > { };
class ct_Any16BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any16Block>, gct_CharBlock <ct_Any16Block, char> > { };
class ct_Any32BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any32Block>, gct_CharBlock <ct_Any32Block, char> > { };

Spirick Tuning Reference Manual Page 33

Every directory of a global store contains a file 'blockstore.h'.

The file 'tuning/std/blockstore.h' contains the following declarations:

class ct_Std_BlockStore;
class ct_Std8BlockStore;
class ct_Std16BlockStore;
class ct_Std32BlockStore;

The file 'tuning/rnd/blockstore.h' contains the following declarations:

class ct_Rnd_BlockStore;
class ct_Rnd8BlockStore;
class ct_Rnd16BlockStore;
class ct_Rnd32BlockStore;

The file 'tuning/chn/blockstore.h' contains the following declarations:

class ct_Chn_BlockStore;
class ct_Chn8BlockStore;
class ct_Chn16BlockStore;
class ct_Chn32BlockStore;

1.5.3 Reference Counter (tuning/refcount.hpp)

ct_RefCount is a class containing a reference counter and a boolean value. It is used by ref-stores.

Class Declaration
typedef t_UInt32 t_RefCount;

class ct_RefCount
 {
public:
 inline ct_RefCount ();
 inline void Initialize ();

 inline t_RefCount GetRef () const;
 inline void IncRef ();
 inline void DecRef ();

 inline bool IsAlloc () const;
 inline void SetAlloc ();
 inline bool IsFree () const;
 inline void SetFree ();
 inline bool IsNull () const;
 };

Data Types
typedef t_UInt32 t_RefCount;

This is the numeric reference counter type.

Methods
ct_RefCount ();

Sets the reference counter to zero and the alloc flag to true.

Spirick Tuning Reference Manual Page 34

void Initialize ();

Sets the reference counter to zero and the alloc flag to true.

t_RefCount GetRef () const;

Returns the numeric reference counter.

void IncRef ();

Increases the reference counter by 1.

void DecRef ();

Decreases the reference counter by 1.

bool IsAlloc () const;

Returns the alloc flag.

void SetAlloc ();

Sets the alloc flag.

bool IsFree () const;

Returns true, if the alloc flag is not set.

void SetFree ();

Clears the alloc flag.

bool IsNull () const;

Returns true, if the reference counter equals zero and the alloc flag is not set.

1.5.4 Ref-Store (tuning/refstore.h)

A ref-store enhances an existing store class with reference counting. Each single memory block is
associated with a reference counter. The reference counters can be used directly or indirectly by special
classes, e.g. smart pointers.

Note that the reference counter is associated with the memory block and not with its contents, e.g. a
C++ object. Deleting a C++ object and releasing the corresponding memory are two distinct steps. The
C++ object can be deleted by its owner, and the corresponding memory block can be released by the
reference counter. If a C++ object is deleted and the reference counter is greater than zero, then all
smart pointers remain valid, but access to the C++ object is not allowed. In this way isolated islands in
complex, reference counting based data structures can be avoided.

Template Declaration
template <class t_store>
 class gct_RefStore
 {
 public:
 typedef t_store::t_Size t_Size;
 typedef t_store::t_Position t_Position;

 void Swap (gct_RefStore & co_swap);
 inline t_UInt StoreInfoSize () const;
 inline t_UInt MaxAlloc () const;

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);

Spirick Tuning Reference Manual Page 35

 inline void Free (t_Position o_pos);

 inline void * AddrOf (t_Position o_pos) const;
 inline t_Position PosOf (void * pv_adr) const;

 inline t_Size SizeOf (t_Position o_pos) const;
 inline t_Size RoundedSizeOf (t_Position o_pos) const;

 inline bool CanFreeAll () const;
 inline void FreeAll ();

 inline void IncRef (t_Position o_pos);
 inline void DecRef (t_Position o_pos);
 inline t_RefCount GetRef (t_Position o_pos) const;
 inline bool IsAlloc (t_Position o_pos) const;
 inline bool IsFree (t_Position o_pos) const;

 inline t_store * GetStore ();
 };

A ref-store passes allocation requests to the underlying store object. The block size is increased by the
size of the ct_RefCount object, and the ct_RefCount object is initialized. The reference counter can be
changed by the ref-store methods IncRef and DecRef.

If a memory block is released by the ref-store method Free, then the alloc flag of the corresponding
ct_RefCount object is cleared. If additionally the reference counter equals zero, the block is released by
the underlying store object. Otherwise the reference counter can be changed by the ref-store methods
IncRef and DecRef, but access to the memory by calling the method AddrOf is not allowed. If the reference
counter becomes zero, the block is released by the underlying store object.

The class template gct_RefStore does not support the FreeAll method.

Additional Methods
void IncRef (t_Position o_pos);

Increases the reference counter at position o_pos by 1.

void DecRef (t_Position o_pos);

Decreases the reference counter at position o_pos by 1.

t_RefCount GetRef (t_Position o_pos) const;

Returns the numeric reference counter at position o_pos.

bool IsAlloc (t_Position o_pos) const;

Returns the alloc flag of position value o_pos.

bool IsFree (t_Position o_pos) const;

Returns true, if the alloc flag of position value o_pos is not set.

t_store * GetStore ();

Returns a pointer to the underlaying store object.

1.5.5 Ref-Store Instances (tuning/xxx/refstore.h)

Some template instances are predefined to easily use the ref-store interface. The macro
REF_STORE_DCLS(Obj) generates for each wrapper class of a global store one ref-store class.

Spirick Tuning Reference Manual Page 36

The macro

REF_STORE_DCLS (Any)

expands to:

class ct_Any_RefStore:
 public gct_RefStore <ct_Any_Store> { };
class ct_Any8RefStore:
 public gct_RefStore <ct_Any8Store> { };
class ct_Any16RefStore:
 public gct_RefStore <ct_Any16Store> { };
class ct_Any32RefStore:
 public gct_RefStore <ct_Any32Store> { };

Every directory of a global store contains a file 'refstore.h'.

The file 'tuning/std/refstore.h' contains the following declarations:

class ct_Std_RefStore;
class ct_Std8RefStore;
class ct_Std16RefStore;
class ct_Std32RefStore;

The file 'tuning/rnd/refstore.h' contains the following declarations:

class ct_Rnd_RefStore;
class ct_Rnd8RefStore;
class ct_Rnd16RefStore;
class ct_Rnd32RefStore;

The file 'tuning/chn/refstore.h' contains the following declarations:

class ct_Chn_RefStore;
class ct_Chn8RefStore;
class ct_Chn16RefStore;
class ct_Chn32RefStore;

1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)

A block-ref-store is a ref-store enhancement of a block store.
Some template instances are predefined to easily use block-ref-stores. The macro
BLOCKREF_STORE_DCLS(Obj) generates for each wrapper class of a global store one block-ref-store class.

The macro

BLOCKREF_STORE_DCLS (Any)

expands to:

class ct_Any_BlockRefStore:
 public gct_RefStore <ct_Any_BlockStore> { };
class ct_Any8BlockRefStore:
 public gct_RefStore <ct_Any8BlockStore> { };
class ct_Any16BlockRefStore:
 public gct_RefStore <ct_Any16BlockStore> { };
class ct_Any32BlockRefStore:
 public gct_RefStore <ct_Any32BlockStore> { };

Every directory of a global store contains a file 'blockrefstore.h'.

Spirick Tuning Reference Manual Page 37

The file 'tuning/std/blockrefstore.h' contains the following declarations:

class ct_Std_BlockRefStore;
class ct_Std8BlockRefStore;
class ct_Std16BlockRefStore;
class ct_Std32BlockRefStore;

The file 'tuning/rnd/blockrefstore.h' contains the following declarations:

class ct_Rnd_BlockRefStore;
class ct_Rnd8BlockRefStore;
class ct_Rnd16BlockRefStore;
class ct_Rnd32BlockRefStore;

The file 'tuning/chn/blockrefstore.h' contains the following declarations:

class ct_Chn_BlockRefStore;
class ct_Chn8BlockRefStore;
class ct_Chn16BlockRefStore;
class ct_Chn32BlockRefStore;

1.5.7 Pack Store (tuning/packstore.hpp)

A pack store is optimized for many successive memory allocations which can be released in a single
step. Typical use cases are temporary data inside of a complex calculation.

The internal memory layout algorithm is very simple. A pack store uses successively the space of a data
page. Memory requests may have an arbitrary size. If the remaining space of the data page is too small
for a new memory request, a new data page is used. If the size of a memory request is greater than a
configurable minimum size, the new memory block uses its own data page.

Reallocation and release of single memory blocks are not implemented. However, a pack store can
release the entire memory by calling the method FreeAll. If b_keepPage equals true, the first data page is
not released.

This special implementation uses a class with virtual functions instead of template parameters. The pack
store uses a helper block for managing pointers to the pages. Different store classes can be used for the
management block and the data pages.

The implementation of the pack store consists of the base class ct_PackStoreBase with some virtual
methods and the derived class ct_PackStore with access to two store objects.

Class Declaration
class ct_PackStoreBase
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

protected:
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size) = 0;
 virtual t_UInt MaxDataAlloc () const = 0;
 virtual void * AllocData (t_Size o_size) = 0;
 virtual void FreeData (void * pv_mem) = 0;

public:
 ct_PackStoreBase ();
 virtual ~ct_PackStoreBase () { }
 void Swap (ct_PackStoreBase & co_swap);

Spirick Tuning Reference Manual Page 38

 static inline t_UInt StoreInfoSize ();
 inline t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 t_Size SizeOf (t_Position o_pos);
 t_Size RoundedSizeOf (t_Position o_pos);

 bool CanFreeAll ();
 void FreeAll (bool b_keepPage = false);

 bool Init (t_Size o_align, t_Size o_pageSize,
 t_Size o_ownPageSize = 0);

Additional Methods
bool Init (t_Size o_align, t_Size o_pageSize, t_Size o_ownPageSize = 0);

Initializes an empty pack store. The parameter o_align determines the alignment of memory blocks (1, 2,
4, 8 or 16 bytes). The parameter o_pageSize determines the size of data pages. The optional parameter
o_ownPageSize determines the minimum size of own data pages (default: o_pageSize / 4). If the size of a
memory request is greater than this minimum size, the new memory block uses its own data page.

Class Declaration
class ct_PackStore: public ct_PackStoreBase
 {
protected:
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size);
 virtual t_UInt MaxDataAlloc () const;
 virtual void * AllocData (t_Size o_size);
 virtual void FreeData (void * pv_mem);

public:
 ~ct_PackStore ();
 };

Methods
void * ReallocPtr (void * pv_mem, t_Size o_size);

Reallocate memory for the pointer management block.

t_UInt MaxDataAlloc () const;

Returns the maximum size of a contiguous data block.

void * AllocData (t_Size o_size);

Allocate a single data page.

void FreeData (void * pv_mem);

Release a single data page.

~ct_PackStore ();

Within the destructor of the derived class all memory must be released. The destructor of the base class
has no access to the virtual methods implemented in the derived class.

Spirick Tuning Reference Manual Page 39

1.5.8 Pack Store 2 (tuning/packstore.h)

The class template gct_PackStore provides an alternative implementation of the pack store concept (see
above). The template parameter t_staticStore must have the common store interface. All methods of
t_staticStore must be declared static, examples are ct_Rnd_Store and ct_Chn_Store. Every directory of a
global store contains a file 'packstore.h' (predefined template instance).

Reallocation and release of single memory blocks are not implemented. However, a pack store can
release the entire memory by calling the method FreeAll. If b_keepPage equals true, the first data page is
not released.

Template Declaration
template <class t_staticStore>
 class gct_PackStore
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;
 typedef void * t_Position;

 gct_PackStore ();
 ~gct_PackStore ();
 inline void Swap (gct_PackStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 void FreeAll (bool b_keepPage = false);

 bool Init (unsigned u_align, unsigned u_pageExp,
 t_Size o_ownPageSize = 0);
 };

Additional Methods
bool Init (unsigned u_align, unsigned u_pageExp, t_Size o_ownPageSize = 0);

Initializes an empty pack store. The parameter u_align determines the alignment of memory blocks (1, 2,
4, 8 or 16 bytes). The parameter u_pageExp (>= 7) determines the size of data pages (2^exp). The optional
parameter o_ownPageSize determines the minimum size of own data pages (default: PageSize / 4). If the
size of a memory request is greater than this minimum size, the new memory block uses its own data
page.

Spirick Tuning Reference Manual Page 40

2 OBJECT MANAGEMENT

2.1 Container

2.1.1 Container Interface

Containers and collections are two different concepts to manage sets of C++ objects. A collection can
manage a polymorphic set of objects which are derived from a common base class. A container
manages a uniform set of objects. It also contains the objects itself, i.e. the underlying memory. A
container can optimize memory usage in many different ways.

Like store classes, all container classes share a common interface. So it's easy to switch between
multiple container implementations.

Template Declaration
template <class t_obj>
 class gct_AnyContainer
 {
 public:
 typedef t_UInt t_Length;
 typedef void * t_Position;
 typedef t_obj t_Object;

 gct_AnyContainer ();
 gct_AnyContainer (const gct_AnyContainer & co);
 ~gct_AnyContainer ();
 gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);
 void Swap (gct_AnyContainer & co_swap);

 bool IsEmpty () const;
 t_Length GetLen () const;

 t_Position First () const;
 t_Position Last () const;
 t_Position Next (t_Position o_pos) const;
 t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 t_Object * GetObj (t_Position o_pos) const;
 t_Position AddObj (const t_Object * po_obj = 0);
 t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();
 };

Object Type Requirements

Spirick Tuning Reference Manual Page 41

The Spirick container interface consists of a basic interface (described in this section) and various
enhancements (e.g. the comp-container interface). The object type requirements of the basic interface
are very simple. A class type must contain a default and a copy constructor, no other requirements have
to be fulfilled. Numeric and pointer types can also be used.

Object Constructor, Destructor

A container contains the objects itself, i.e. the underlying memory, and it calls the constructors and
destructors of the managed objects. If a new object is added to a container, the default constructor is
called. If an existing object is added to a container, the copy constructor of a new object is called and
the existing object remains unchanged. If an object is deleted from a container, the destructor is called
and the memory is released to the underlying store object.

Copy/Move Object Memory

The C++ standard (ISO/IEC 14882) states that only "trivially copyable" objects may be copied or moved
by memcpy and memmove. However, in almost all cases C++ objects can be copied or moved by memcpy and
memmove without any side effects. Another possibility is to copy the objects by copy constructors and
assignment operators. In this case the performance would significantly drop. That's why some Spirick
containers copy and move objects by memcpy and memmove. Note that there are some rare cases where
objects must not be copied by memcpy and memmove , e.g. lowlevel mutex objects.

Stores and Containers

There are some similarities between Spirick stores and containers. Like stores the containers use
position values to manage their contents. The store method Alloc is similar to the container method
AddObj. The store method AddrOf is similar to the container method GetObj. The store method Free is
similar to the container method DelObj etc.

Validity of Position Values

Spirick stores ensure the validity of position values until the method Free is called. In contrast, some
Spirick containers ensure the validity of position values and some do not. For example, list containers
(like store objects) ensure the validity of position values. But, if an array container was modified by
adding or deleting an object, the position values of all subsequent entries become invalid.

Data Types
typedef t_UInt t_Length;

The nested type t_Length describes the number of contained objects, examples are t_UInt, t_UInt8,
t_UInt16 and t_UInt32. If t_Length is defined as t_UInt8, the maximum number of entries will be 255. The
size of the container object can be reduced in some cases.

typedef void * t_Position;

Like store classes, container classes use position values to manage their objects, examples are void *,
t_UInt, t_UInt8, t_UInt16 and t_UInt32. The position value zero is invalid per definition. The method GetObj
returns a pointer to the object at a specific position. If the position type is void *, the position value may
(or may not) be equal to the object pointer. Hence, always use the method GetObj to access objects and
do not use the position value itself.

typedef t_obj t_Object;

The nested type t_Object corresponds to the template parameter t_obj. It can be used by derived
classes.

Constructors, Destructor, Assignment, Swap
gct_AnyContainer ();

Initializes an empty container object.

Spirick Tuning Reference Manual Page 42

gct_AnyContainer (const gct_AnyContainer & co_init);

The copy constructor copies the contents of an existing container by using the copy constructors of the
contained objects.

~gct_AnyContainer ();

The destructor clears the container by calling the method DelAll.

gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);

The assignment operator copies the contents of an existing container by using the copy constructors of
the contained objects.

void Swap (gct_AnyContainer & co_swap);

Swaps the contents of the two container objects.

Number of Objects
bool IsEmpty () const;

Returns true if the container is empty.

t_Length GetLen () const;

Returns the number of contained objects.

Iterate over Objects
t_Position First () const;

Returns the position of the first object or zero if the container is empty.

t_Position Last () const;

Returns the position of the last object or zero if the container is empty.

t_Position Next (t_Position o_pos) const;

Returns the position of the next object or zero if o_pos is the position of the last object. o_pos must be a
valid position value.

t_Position Prev (t_Position o_pos) const;

Returns the position of the previous object or zero if o_pos is the position of the first object. o_pos must
be a valid position value.

t_Position Nth (t_Length u_idx) const;

Returns the position of the nth object (0 < u_idx <= GetLen).
Note that there is no zeroth object. The first object has index 1.

Access to Objects
t_Object * GetObj (t_Position o_pos) const;

Returns a pointer to the object at position o_pos. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 43

Add Objects
t_Position AddObj (const t_Object * po_obj = 0);

Adds an object and returns the position of the new object. The logical position of the new object
depends on the container implementation. If po_obj equals zero, the new object is created by the default
constructor, otherwise the copy constructor is used.

t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);

Adds an object before a specific position and returns the position of the new object. If o_pos equals zero,
the new object is appended after the last object, i.e. it will be the new last object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

Adds an object after a specific position and returns the position of the new object. If o_pos equals zero,
the new object is inserted before the first object, i.e. it will be the new first object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

Append/Truncate Multiple Objects
void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);

Adds o_count objects at the end of the container. If po_obj equals zero, the new objects are created by
the default constructor, otherwise the copy constructor is used.

void TruncateObj (t_Length o_count = 1);

Deletes o_count objects at the end of the container.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Objects
t_Position DelObj (t_Position o_pos);

Deletes the object at position o_pos. Calls the destructor of the object and releases the corresponding
memory. o_pos must be a valid position value. The method returns Next (o_pos), i.e. the position of the
next object or zero, if the last object was deleted.

void DelAll ();

Deletes all contained objects. Calls the destructor of the objects and releases the corresponding
memory.

t_Position FreeObj (t_Position o_pos);

Deletes the object at position o_pos without calling the destructor. This method is slightly faster than
DelObj. o_pos must be a valid position value. The method returns Next (o_pos), i.e. the position of the next
object or zero, if the last object was deleted.

void FreeAll ();

Releases the entire memory without calling the destructor of the contained objects.

Spirick Tuning Reference Manual Page 44

Exception Handling
While working with containers, exceptions may occur inside of constructors and destructors of
contained objects. Spirick container classes contain minimal exception handlers. These handlers ensure
the consistency of the container object and pass the exception unchanged to a higher-level handler.

The following rules apply:

If the exception occurs inside of the constructor while adding a new object (AddObj), the container
remains unchanged (no new object will be added).
If the exception occurs inside of the destructor while deleting an object (DelObj), the object will be
deleted anyway.
If the exception occurs inside of a constructor while adding several objects (AppendObj), the insertion is
aborted. All previously added objects remain unchanged.
If the exception occurs inside of a destructor while deleting several objects (TruncateObj), the deletion is
aborted. The object causing the exception will be deleted anyway.
If the exception occurs inside of a destructor while deleting all objects (DelAll), the deletion will be
continued. Afterwards the container will be empty.
If the exception occurs inside of the container copy constructor or assignment operator, the method
DelAll will be called.

2.1.2 Container Operations

Insert, Copy and Delete Objects
The following sample code demonstrates some simple container operations. The class ct_Int is
described in the section 'Sample Programs'.

ct_Int co_int = 1;
ct_Int * pco_int;
gct_AnyContainer <ct_Int> co_container;
gct_AnyContainer <ct_Int>::t_Position o_pos;

// Add a new object by calling the default constructor
o_pos = co_container. AddObj ();

// Access the object and initialize it
pco_int = co_container. GetObj (o_pos);
(* pco_int) = 2;

// Copy an existing object into the container
o_pos = co_container. AddObj (& co_int);

// Delete a single object
co_container. DelObj (o_pos);

Iterate Forward
The following sample code demonstrates a forward iteration over a container.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. First ();
 o_pos != 0;
 o_pos = co_container. Next (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Spirick Tuning Reference Manual Page 45

Iterate Backward
The following sample code demonstrates a backward iteration over a container.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. Last ();
 o_pos != 0;
 o_pos = co_container. Prev (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Iterate and Modify
The following sample code demonstrates how to iterate and modify a container.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_container. DelObj (o_pos) :
 co_container. Next (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Alternatively a while loop can be used.

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

o_pos = co_container. First ();

while (o_pos != 0)
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 if (/* delete entry ? */)
 o_pos = co_container. DelObj (o_pos);
 else
 o_pos = co_container. Next (o_pos);
 }

2.1.3 Extended Container (tuning/extcont.h)

The class template gct_ExtContainer enhances the usability of the basic container interface. Example: To
access the nth object of a container, two methods must be called.

gct_AnyContainer <float> co_floats;
// ...
float f = co_floats. GetObj (co_floats. Nth (5));

For such a case the class template gct_ExtContainer provides the method GetNthObj.

Spirick Tuning Reference Manual Page 46

The template parameter t_container must comply with the basic container interface. It is used as the
base class of the extended container.

Base Class
gct_AnyContainer (see above 'Container Interface')

Template Declaration
template <class t_container>
 class gct_ExtContainer: public t_container
 {
 public:
 inline t_Object * GetFirstObj () const;
 inline t_Object * GetLastObj () const;
 inline t_Object * GetNextObj (t_Position o_pos) const;
 inline t_Object * GetPrevObj (t_Position o_pos) const;
 inline t_Object * GetNthObj (t_Length u_idx) const;

 inline t_Position AddObjBeforeFirst (const t_Object * po_obj = 0);
 inline t_Position AddObjAfterLast (const t_Object * po_obj = 0);
 inline t_Position AddObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);
 inline t_Position AddObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

 t_Object * GetNewObj (const t_Object * po_obj = 0);
 t_Object * GetNewFirstObj (const t_Object * po_obj = 0);
 t_Object * GetNewLastObj (const t_Object * po_obj = 0);
 t_Object * GetNewObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Object * GetNewObjAfter (t_Position o_pos, const t_Object * po_obj = 0);
 t_Object * GetNewObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);
 t_Object * GetNewObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

 inline t_Position DelFirstObj ();
 inline t_Position DelLastObj ();
 inline t_Position DelNextObj (t_Position o_pos);
 inline t_Position DelPrevObj (t_Position o_pos);
 inline t_Position DelNthObj (t_Length u_idx);

 inline t_Position FreeFirstObj ();
 inline t_Position FreeLastObj ();
 inline t_Position FreeNextObj (t_Position o_pos);
 inline t_Position FreePrevObj (t_Position o_pos);
 inline t_Position FreeNthObj (t_Length u_idx);
 };

// Example of an implementation
template <class t_container>
 inline gct_ExtContainer <t_container>:: t_Object *
 gct_ExtContainer <t_container>:: GetNthObj (t_Length u_idx) const
 {
 return GetObj (Nth (u_idx));
 }

Access to Objects
t_Object * GetFirstObj () const;

Returns a pointer to the first object. The container must contain at least one object.

t_Object * GetLastObj () const;

Returns a pointer to the last object. The container must contain at least one object.

Spirick Tuning Reference Manual Page 47

t_Object * GetNextObj (t_Position o_pos) const;

Returns a pointer to the next object. o_pos and Next (o_pos) must be valid position values.

t_Object * GetPrevObj (t_Position o_pos) const;

Returns a pointer to the previous object. o_pos and Prev (o_pos) must be valid position values.

t_Object * GetNthObj (t_Length u_idx) const;

Returns a pointer to the nth object (0 < u_idx <= GetLen).

Add Objects
t_Position AddObjBeforeFirst (const t_Object * po_obj = 0);

Adds an object before the first object and returns the position of the new object. The new object will be
the new first object. If po_obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t_Position AddObjAfterLast (const t_Object * po_obj = 0);

Adds an object after the last object and returns the position of the new object. The new object will be
the new last object. If po_obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t_Position AddObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);

Adds an object before the nth object and returns the position of the new object (0 < u_idx <= GetLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

t_Position AddObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

Adds an object after the nth object and returns the position of the new object (0 < u_idx <= GetLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

Access to New Objects
t_Object * GetNewObj (const t_Object * po_obj = 0);

Adds an object and returns a pointer to the new object. The logical position of the new object depends
on the container implementation. If po_obj equals zero, the new object is created by the default
constructor, otherwise the copy constructor is used.

t_Object * GetNewFirstObj (const t_Object * po_obj = 0);

Adds an object before the first object and returns a pointer to the new object. The new object will be
the new first object. If po_obj equals zero, the new object is created by the default constructor,
otherwise the copy constructor is used.

t_Object * GetNewLastObj (const t_Object * po_obj = 0);

Adds an object after the last object and returns a pointer to the new object. The new object will be the
new last object. If po_obj equals zero, the new object is created by the default constructor, otherwise
the copy constructor is used.

t_Object * GetNewObjBefore (t_Position o_pos, const t_Object * po_obj = 0);

Adds an object before a specific position and returns a pointer to the new object. If o_pos equals zero,
the new object is appended after the last object, i.e. it will be the new last object. If po_obj equals zero,
the new object is created by the default constructor, otherwise the copy constructor is used.

Spirick Tuning Reference Manual Page 48

t_Object * GetNewObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

Adds an object after a specific position and returns a pointer to the new object. If o_pos equals zero, the
new object is inserted before the first object, i.e. it will be the new first object. If po_obj equals zero, the
new object is created by the default constructor, otherwise the copy constructor is used.

t_Object * GetNewObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);

Adds an object before the nth object and returns a pointer to the new object (0 < u_idx <= GetLen). If
po_obj equals zero, the new object is created by the default constructor, otherwise the copy constructor
is used.

t_Object * GetNewObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

Adds an object after the nth object and returns a pointer to the new object (0 < u_idx <= GetLen). If po_obj
equals zero, the new object is created by the default constructor, otherwise the copy constructor is
used.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Objects
t_Position DelFirstObj ();

Deletes the first object. Calls the destructor of the object and releases the corresponding memory. The
container must contain at least one object. The method returns the position of the new first object or
zero, if the last object was deleted.

t_Position DelLastObj ();

Deletes the last object. Calls the destructor of the object and releases the corresponding memory. The
container must contain at least one object. The method always returns zero, because the last object
was deleted.

t_Position DelNextObj (t_Position o_pos);

Deletes the object at position Next (o_pos). Calls the destructor of the object and releases the
corresponding memory. o_pos and Next (o_pos) must be valid position values. The method returns Next
(Next (o_pos)), i.e. the position of the next object of the deleted object or zero, if the last object was
deleted.

t_Position DelPrevObj (t_Position o_pos);

Deletes the object at position Prev (o_pos). Calls the destructor of the object and releases the
corresponding memory. o_pos and Prev (o_pos) must be valid position values. The method returns o_pos,
because it is the position of the next object of the deleted object.

t_Position DelNthObj (t_Length u_idx);

Deletes the nth object (0 < u_idx <= GetLen). Calls the destructor of the object and releases the
corresponding memory. The method returns Next (Nth (u_idx)), i.e. the position of the next object of the
deleted object or zero, if the last object was deleted.

t_Position FreeFirstObj ();

Deletes the first object without calling the destructor. The container must contain at least one object.
The method returns the position of the new first object or zero, if the last object was deleted.

Spirick Tuning Reference Manual Page 49

t_Position FreeLastObj ();

Deletes the last object without calling the destructor. The container must contain at least one object.
The method always returns zero, because the last object was deleted.

t_Position FreeNextObj (t_Position o_pos);

Deletes the object at position Next (o_pos) without calling the destructor. o_pos and Next (o_pos) must be
valid position values. The method returns Next (Next (o_pos)), i.e. the position of the next object of the
deleted object or zero, if the last object was deleted.

t_Position FreePrevObj (t_Position o_pos);

Deletes the object at position Prev (o_pos) without calling the destructor. o_pos and Prev (o_pos) must be
valid position values. The method returns o_pos, because it is the position of the next object of the
deleted object.

t_Position FreeNthObj (t_Length u_idx);

Deletes the nth object without calling the destructor (0 < u_idx <= GetLen). The method returns Next (Nth
(u_idx)), i.e. the position of the next object of the deleted object or zero, if the last object was deleted.

2.2 Array and List Containers

2.2.1 Array Containers (tuning/array.h)

Array containers are optimized for size. Like static arrays, array containers store objects contiguous,
without any management overhead. If an array container was modified by adding or deleting an object,
all subsequent entries are moved by memmove and the position values of these objects become invalid. The
validity of memory addresses depends on the implementation of the underlying block class. Array
containers provide direct access to the nth object. The method AddObj adds the new object at the end of
the array.

The first template parameter t_obj is the type of the contained objects. The second template parameter
t_block must at least contain the item block interface. It is used as the base class of the array container.
The helper class template gct_FixItemArray passes the size of an object to the class template
gct_FixItemBlock.

Base Class
gct_...ItemBlock (see above 'Item Block')

Template Declaration
template <class t_obj, class t_block>
 class gct_Array: public t_block
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef t_block::t_Size t_Position;
 typedef t_obj t_Object;

 inline gct_Array ();
 inline gct_Array (const gct_Array & co_init);
 inline ~gct_Array ();
 inline gct_Array & operator = (const gct_Array & co_asgn);

 inline bool IsEmpty () const;
 inline t_Length GetMaxLen () const;

Spirick Tuning Reference Manual Page 50

 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 inline t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;
 inline t_Position AddObj (const t_Object * po_obj = 0);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 inline t_Position FreeObj (t_Position o_pos);
 inline void FreeAll ();

 inline void SetPageSize (t_Size o_size);
 };

Additional Methods
t_Length GetMaxLen () const;

Returns the maximum number of contained objects.

void SetPageSize (t_Size o_size);

Sets the page size, if ct_PageBlock is used as template parameter t_block.

Template Declaration
template <class t_obj, class t_block>
 class gct_FixItemArray:
 public gct_Array <t_obj, gct_FixItemBlock <t_block, sizeof (gct_ArrayNode <t_obj>)> >
 {
 };

2.2.2 Array Instances (tuning/xxx/array.h)

Some template instances are predefined to easily use array containers. The macro ARRAY_DCLS(Obj)
generates for each wrapper class of a global store one array template.

The macro

ARRAY_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any32Block> > { };

Spirick Tuning Reference Manual Page 51

Every directory of a global store contains a file 'array.h'.

The file 'tuning/std/array.h' contains the following declarations:

template <class t_obj> class gct_Std_Array;
template <class t_obj> class gct_Std8Array;
template <class t_obj> class gct_Std16Array;
template <class t_obj> class gct_Std32Array;

The file 'tuning/rnd/array.h' contains the following declarations:

template <class t_obj> class gct_Rnd_Array;
template <class t_obj> class gct_Rnd8Array;
template <class t_obj> class gct_Rnd16Array;
template <class t_obj> class gct_Rnd32Array;

The file 'tuning/chn/array.h' contains the following declarations:

template <class t_obj> class gct_Chn_Array;
template <class t_obj> class gct_Chn8Array;
template <class t_obj> class gct_Chn16Array;
template <class t_obj> class gct_Chn32Array;

2.2.3 List Containers (tuning/dlist.h)

List containers are optimized for fast random modification and for validity of position values. If a list
entry is added or deleted, only the direct neighbors are affected. All other list entries remain unchanged.
The position value of a list entry remains valid until the entry is deleted. This feature is important if
references (position values) to list entries are stored permanently.

The validity of memory addresses depends on the implementation of the underlying store class. If a
predefined global store or a page-based block store is used, memory addresses of list entries remain
valid. If a non-paged block store is used, memory addresses of list entries can change, if the size of the
underlying block changes.

Note that every list node contains references (position values) to the direct neighbors. Note also that
every list node is allocated separately. If a predefined global store is used, rounding and management
overhead occurs at every single list node. This overhead can be avoided by using a block store.

The first template parameter t_obj is the type of the contained objects. The second template parameter
t_store must at least contain the store interface. The list class contains a data member of type t_store.
The additional method GetStore provides access to the store object. The method AddObj adds the new
object at the end of the list.

Template Declaration
template <class t_obj, class t_store>
 class gct_DList
 {
 public:
 typedef t_store::t_Size t_Length;
 typedef t_store::t_Position t_Position;
 typedef t_obj t_Object;

 inline gct_DList ();
 inline gct_DList (const gct_DList & co_init);
 inline ~gct_DList ();
 inline gct_DList & operator = (const gct_DList & co_asgn);
 void Swap (gct_DList & co_swap);

Spirick Tuning Reference Manual Page 52

 inline bool IsEmpty () const;
 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;
 inline t_Position AddObj (const t_Object * po_obj = 0);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();

 inline t_store * GetStore ();
 };

2.2.4 List Instances (tuning/xxx/dlist.h)

Some template instances are predefined to easily use list containers. The macro DLIST_DCLS(Obj)
generates for each wrapper class of a global store one list template.

The macro

DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any_Store> > { };
template <class t_obj> class gct_Any8DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any8Store> > { };
template <class t_obj> class gct_Any16DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any16Store> > { };
template <class t_obj> class gct_Any32DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any32Store> > { };

Every directory of a global store contains a file 'dlist.h'.

The file 'tuning/std/dlist.h' contains the following declarations:

template <class t_obj> class gct_Std_DList;
template <class t_obj> class gct_Std8DList;
template <class t_obj> class gct_Std16DList;
template <class t_obj> class gct_Std32DList;

The file 'tuning/rnd/dlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_DList;
template <class t_obj> class gct_Rnd8DList;
template <class t_obj> class gct_Rnd16DList;
template <class t_obj> class gct_Rnd32DList;

The file 'tuning/chn/dlist.h' contains the following declarations:

Spirick Tuning Reference Manual Page 53

template <class t_obj> class gct_Chn_DList;
template <class t_obj> class gct_Chn8DList;
template <class t_obj> class gct_Chn16DList;
template <class t_obj> class gct_Chn32DList;

2.3 Sorted Containers

2.3.1 Sorted Arrays (tuning/sortarr.h)

Sorted array containers are very similar to normal array containers. The main difference between these
two concepts is the order in which objects are positioned. The object type of a sorted array container
must provide a comparison function 'operator <'. New objects are added by AddObj. They are sorted
automatically in ascending order. Adding multiple equal objects is possible. They are positioned in the
order they have been added.

Note that using the methods AddObjBefore and AddObjAfter is allowed, if the position is correct with
respect to 'operator <'. The method AppendObj is not supported.

If the object type additionally provides the comparison function 'operator ==', the sorted array can be
extended by the comp-container interface (see below 'Comp-Container'). In this case, an efficient binary
search is used.

The first template parameter t_obj is the type of the contained objects. The second template parameter
t_block must at least contain the item block interface. It is used as the base class of the sorted array
container. The helper class template gct_FixItemSortedArray passes the size of an object to the class
template gct_FixItemBlock.

Base Class
gct_...ItemBlock (see above 'Item Block')

Template Declaration
template <class t_obj, class t_block >
 class gct_SortedArray: public t_block
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef t_block::t_Size t_Position;
 typedef t_obj t_Object;

 inline gct_SortedArray ();
 inline gct_SortedArray (const gct_SortedArray & co_init);
 inline ~gct_SortedArray ();
 inline gct_SortedArray & operator = (const gct_SortedArray & co_asgn);

 inline bool IsEmpty () const;
 inline t_Length GetMaxLen () const;
 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 inline t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;

Spirick Tuning Reference Manual Page 54

 t_Position AddObj (const t_Object * po_obj);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();

 inline t_Position FreeObj (t_Position o_pos);
 inline void FreeAll ();

 inline void SetPageSize (t_Size o_size);
 t_Position Before (const t_Object * po_obj) const;
 };

Additional Methods
t_Length GetMaxLen () const;

Returns the maximum number of contained objects.

void SetPageSize (t_Size o_size);

Sets the page size, if ct_PageBlock is used as template parameter t_block.

t_Position Before (const t_Object * po_obj) const;

Returns the position of the last object which is smaller than or equal to * po_obj. Returns zero if * po_obj
is smaller than the first object. Returns Last () if * po_obj is greater than or equal to the last object.

Template Declaration
template <class t_obj, class t_block>
 class gct_FixItemSortedArray:
 public gct_SortedArray <t_obj, gct_FixItemBlock <t_block, sizeof (gct_SortedArrayNode <t_obj>)> >
 {
 };

2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h)

Some template instances are predefined to easily use sorted array containers. The macro
SORTEDARRAY_DCLS(Obj) generates for each wrapper class of a global store one sorted array template.

The macro

SORTEDARRAY_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any32Block> > { };

Every directory of a global store contains a file 'sortedarray.h'.

Spirick Tuning Reference Manual Page 55

The file 'tuning/std/sortedarray.h' contains the following declarations:

template <class t_obj> class gct_Std_SortedArray;
template <class t_obj> class gct_Std8SortedArray;
template <class t_obj> class gct_Std16SortedArray;
template <class t_obj> class gct_Std32SortedArray;

The file 'tuning/rnd/sortedarray.h' contains the following declarations:

template <class t_obj> class gct_Rnd_SortedArray;
template <class t_obj> class gct_Rnd8SortedArray;
template <class t_obj> class gct_Rnd16SortedArray;
template <class t_obj> class gct_Rnd32SortedArray;

The file 'tuning/chn/sortedarray.h' contains the following declarations:

template <class t_obj> class gct_Chn_SortedArray;
template <class t_obj> class gct_Chn8SortedArray;
template <class t_obj> class gct_Chn16SortedArray;
template <class t_obj> class gct_Chn32SortedArray;

2.3.3 Hash Tables (tuning/hashtable.h)

Sorted arrays and hash tables are two different concepts for access acceleration in container classes.
Sorted arrays are suitable for a small amount of data. If an array container becomes too large,
modifications become time consuming. Hash tables are suitable for larger amounts of data. If a hash
table contains only a few objects, the management overhead is relatively high.

The Spirick hash table container is a special implementation of the common hash table concept. It is
implemented as an array of arrays. The outer array has a fixed size, the so-called 'hash size'. The result
of 'hash value' modulo 'hash size' is an index for this array. An inner array contains all objects which
have the same index value.

To reduce the number of collisions of index values, the hash size should be a prime number. The
constants u_HashPrime1 to u_HashPrime16 are predefined. The hash size can be set by the method
SetHashSize while the container is empty. The default value is u_HashPrime4.

The object type of a hash table must provide a hash function GetHash returning an unsigned integer
value. New objects are added by AddObj. The methods AddObjBefore, AddObjAfter, AppendObj and TruncateObj
are not supported. If the object type additionally provides the comparison function 'operator ==', the
hash table can be extended by the comp-container interface (see below 'Comp-Container'). In this case,
an efficient hash search is used.

The first template parameter t_obj is the type of the contained objects. The second template parameter
t_block must at least contain the block interface, e.g. ct_Chn16Block. It is used for inner and outer arrays.

Note that the position type of a hash table is a class containing two data members of type
t_block::t_Size. Using t_UInt16 or t_UInt32 can improve performance. If a hash table container was
modified by adding or deleting an object, the position values of other objects become invalid.

Template Declaration
const unsigned u_HashPrime1 = 1013;
const unsigned u_HashPrime2 = 2039;
const unsigned u_HashPrime4 = 4079;
const unsigned u_HashPrime8 = 8179;
const unsigned u_HashPrime16 = 16369;

Spirick Tuning Reference Manual Page 56

template <class t_obj, class t_block>
 class gct_HashTable
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef gct_HashTablePosition <t_block> t_Position;
 typedef t_obj t_Object;

 gct_HashTable ();
 void Swap (gct_HashTable & co_swap);

 inline bool IsEmpty () const;
 inline t_Length GetLen () const;

 t_Position First () const;
 t_Position Last () const;
 t_Position Next (t_Position o_pos) const;
 t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;

 t_Position AddObj (const t_Object * po_obj);
 t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();

 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();

 void SetHashSize (t_Length o_size);
 inline t_Length GetHashSize () const;
 };

Constants
const unsigned cu_HashPrime1 = 1013;
const unsigned cu_HashPrime2 = 2039;
const unsigned cu_HashPrime4 = 4079;
const unsigned cu_HashPrime8 = 8179;
const unsigned cu_HashPrime16 = 16369;

These constants are recommended values for the hash size.

Additional Methods
void SetHashSize (t_Length o_size);

Sets the hash size while the container is empty.

t_Length GetHashSize () const;

Returns the hash size.

2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)

Some template instances are predefined to easily use hash table containers. The macro
HASHTABLE_DCLS(Obj) generates for each wrapper class of a global store one hash table template.

Spirick Tuning Reference Manual Page 57

The macro

HASHTABLE_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any32Block> > { };

Every directory of a global store contains a file 'hashtable.h'.

The file 'tuning/std/hashtable.h' contains the following declarations:

template <class t_obj> class gct_Std_HashTable;
template <class t_obj> class gct_Std8HashTable;
template <class t_obj> class gct_Std16HashTable;
template <class t_obj> class gct_Std32HashTable;

The file 'tuning/rnd/hashtable.h' contains the following declarations:

template <class t_obj> class gct_Rnd_HashTable;
template <class t_obj> class gct_Rnd8HashTable;
template <class t_obj> class gct_Rnd16HashTable;
template <class t_obj> class gct_Rnd32HashTable;

The file 'tuning/chn/hashtable.h' contains the following declarations:

template <class t_obj> class gct_Chn_HashTable;
template <class t_obj> class gct_Chn8HashTable;
template <class t_obj> class gct_Chn16HashTable;
template <class t_obj> class gct_Chn32HashTable;

2.4 Block and Ref Lists

2.4.1 Block Lists

Various store classes can be used to implement list containers. If a block store is used, the resulting
container will be a 'block list'. Performance improvement: Every list node is allocated separately. If a
predefined global store is used, rounding and management overhead occurs at every single list node.
This overhead can be avoided by using a block store.

Note that every list node contains references (position values) to the direct neighbors. Using t_UInt16 or
t_UInt32 can reduce the size of list nodes. Note also that if a non-paged block store is used, memory
addresses of list entries can change, if the size of the underlying block changes.

2.4.2 Block List Instances (tuning/xxx/blockdlist.h)

Some template instances are predefined to easily use block list containers. The macro
BLOCK_DLIST_DCLS(Obj) generates for each wrapper class of a global store one block list template.

Spirick Tuning Reference Manual Page 58

The macro

BLOCK_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any_BlockStore> > { };
template <class t_obj> class gct_Any8BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any8BlockStore> > { };
template <class t_obj> class gct_Any16BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any16BlockStore> > { };
template <class t_obj> class gct_Any32BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any32BlockStore> > { };

Every directory of a global store contains a file 'blockdlist.h'.

The file 'tuning/std/blockdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_BlockDList;
template <class t_obj> class gct_Std8BlockDList;
template <class t_obj> class gct_Std16BlockDList;
template <class t_obj> class gct_Std32BlockDList;

The file 'tuning/rnd/blockdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_BlockDList;
template <class t_obj> class gct_Rnd8BlockDList;
template <class t_obj> class gct_Rnd16BlockDList;
template <class t_obj> class gct_Rnd32BlockDList;

The file 'tuning/chn/blockdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_BlockDList;
template <class t_obj> class gct_Chn8BlockDList;
template <class t_obj> class gct_Chn16BlockDList;
template <class t_obj> class gct_Chn32BlockDList;

2.4.3 Ref-Lists (tuning/refdlist.h)

Various store classes can be used to implement list containers. If a ref-store is used, the resulting
container will be a 'ref-list'. The class template gct_RefDList simplifies the access to the reference
counters of the embedded store object.

Base Classes
gct_DList (see above 'List Containers')
 gct_ExtContainer (see above 'Extended Container')

Template Declaration
template <class t_obj, class t_store>
 class gct_RefDList:
 public gct_ExtContainer <gct_DList <t_obj, t_store> >
 {
 public:
 inline void IncRef (t_Position o_pos);
 inline void DecRef (t_Position o_pos);
 inline t_RefCount GetRef (t_Position o_pos) const;

Spirick Tuning Reference Manual Page 59

 inline bool IsAlloc (t_Position o_pos) const;
 inline bool IsFree (t_Position o_pos) const;
 };

// Example of an implementation
template <class t_obj, class t_store>
 inline void gct_RefDList <t_obj, t_store>::IncRef (t_Position o_pos)
 {
 o_Store. IncRef (o_pos);
 }

Each single entry of a ref-list is associated with a reference counter. The reference counters can be used
directly or indirectly by special classes, e.g. smart pointers.

Note that the reference counter is associated with the memory of the ref-list entry and not with the C++
object. Deleting a ref-list entry and releasing the corresponding memory are two distinct steps. The ref-
list entry can be deleted by its owner, and the corresponding memory can be released by the reference
counter. If a ref-list entry is deleted and the reference counter is greater than zero, then all smart
pointers remain valid, but access to the C++ object is not allowed. In this way isolated islands in
complex, reference counting based data structures can be avoided.

If a ref-list entry is deleted (e.g. by DelObj), then the alloc flag of the corresponding ct_RefCount object is
cleared. If additionally the reference counter equals zero, the memory of the ref-list entry is released by
the underlying store object. Otherwise the reference counter can be changed by the ref-list methods
IncRef and DecRef, but access to the C++ object by calling the method GetObj is not allowed. If the
reference counter becomes zero, the memory is released by the underlying store object.

Methods
void IncRef (t_Position o_pos);

Increases the reference counter at position o_pos by 1.

void DecRef (t_Position o_pos);

Decreases the reference counter at position o_pos by 1.

t_RefCount GetRef (t_Position o_pos) const;

Returns the numeric reference counter at position o_pos.

bool IsAlloc (t_Position o_pos) const;

Returns the alloc flag of position value o_pos. If the method returns true, access by GetObj is allowed.

bool IsFree (t_Position o_pos) const;

Returns true, if the alloc flag of position value o_pos is not set.

2.4.4 Ref-List Instances (tuning/xxx/refdlist.h)

Some template instances are predefined to easily use ref-list containers. The macro REF_DLIST_DCLS(Obj)
generates for each wrapper class of a global store one ref-list template.

The macro

REF_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_RefDList:
 public gct_RefDList <t_obj, ct_Any_RefStore> { };

Spirick Tuning Reference Manual Page 60

template <class t_obj> class gct_Any8RefDList:
 public gct_RefDList <t_obj, ct_Any8RefStore> { };
template <class t_obj> class gct_Any16RefDList:
 public gct_RefDList <t_obj, ct_Any16RefStore> { };
template <class t_obj> class gct_Any32RefDList:
 public gct_RefDList <t_obj, ct_Any32RefStore> { };

Every directory of a global store contains a file 'refdlist.h'.

The file 'tuning/std/refdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_RefDList;
template <class t_obj> class gct_Std8RefDList;
template <class t_obj> class gct_Std16RefDList;
template <class t_obj> class gct_Std32RefDList;

The file 'tuning/rnd/refdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_RefDList;
template <class t_obj> class gct_Rnd8RefDList;
template <class t_obj> class gct_Rnd16RefDList;
template <class t_obj> class gct_Rnd32RefDList;

The file 'tuning/chn/refdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_RefDList;
template <class t_obj> class gct_Chn8RefDList;
template <class t_obj> class gct_Chn16RefDList;
template <class t_obj> class gct_Chn32RefDList;

2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)

Various store classes can be used to implement list containers. If a block-ref-store is used, the resulting
container will be a 'block-ref-list'.

Some template instances are predefined to easily use block-ref-list containers. The macro
BLOCKREF_DLIST_DCLS(Obj) generates for each wrapper class of a global store one block-ref-list template.

The macro

BLOCKREF_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_BlockRefDList:
 public gct_RefDList <t_obj, ct_Any_BlockRefStore> { };
template <class t_obj> class gct_Any8BlockRefDList:
 public gct_RefDList <t_obj, ct_Any8BlockRefStore> { };
template <class t_obj> class gct_Any16BlockRefDList:
 public gct_RefDList <t_obj, ct_Any16BlockRefStore> { };
template <class t_obj> class gct_Any32BlockRefDList:
 public gct_RefDList <t_obj, ct_Any32BlockRefStore> { };

Every directory of a global store contains a file 'blockrefdlist.h'.

The file 'tuning/std/blockrefdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_BlockRefDList;
template <class t_obj> class gct_Std8BlockRefDList;
template <class t_obj> class gct_Std16BlockRefDList;
template <class t_obj> class gct_Std32BlockRefDList;

Spirick Tuning Reference Manual Page 61

The file 'tuning/rnd/blockrefdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_BlockRefDList;
template <class t_obj> class gct_Rnd8BlockRefDList;
template <class t_obj> class gct_Rnd16BlockRefDList;
template <class t_obj> class gct_Rnd32BlockRefDList;

The file 'tuning/chn/blockrefdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_BlockRefDList;
template <class t_obj> class gct_Chn8BlockRefDList;
template <class t_obj> class gct_Chn16BlockRefDList;
template <class t_obj> class gct_Chn32BlockRefDList;

2.5 Comp, Pointer and Map Containers

2.5.1 Comp-Containers (tuning/compcontainer.h)

The Spirick container interface consists of a basic interface (see above) and various enhancements (e.g.
the comp-container interface). The object type requirements of the basic interface are very simple. A
class type must contain a default and a copy constructor, no other requirements have to be fulfilled. If
the object type additionally provides the comparison function 'operator ==', the basic container can be
extended by the comp-container interface. Numeric and pointer types can also be used.

The class template gct_CompContainer implements some count, search and conditional methods. If the
base container is a normal (unsorted) array or a list, a linear search is used. Sorted arrays and hash
tables provide accelerated algorithms for searching objects. The template parameter t_container must at
least contain the basic container interface, e.g. gct_Std32Array <float>. It is used as the base class of the
comp-container.

Base Classes
gct_AnyContainer (see above 'Container Interface')
[gct_ExtContainer (optional, see above 'Extended Container')]

Template Declaration
template <class t_container>
 class gct_CompContainer: public t_container
 {
 public:
 inline bool ContainsObj (const t_Object * po_obj) const;
 t_Length CountObjs (const t_Object * po_obj) const;

 t_Position SearchFirstObj (const t_Object * po_obj) const;
 t_Position SearchLastObj (const t_Object * po_obj) const;
 t_Position SearchNextObj (t_Position o_pos, const t_Object * po_obj) const;
 t_Position SearchPrevObj (t_Position o_pos, const t_Object * po_obj) const;

 inline t_Object * GetFirstEqualObj (const t_Object * po_obj) const;
 inline t_Object * GetLastEqualObj (const t_Object * po_obj) const;

 inline t_Position AddObjCond (const t_Object * po_obj);
 inline t_Position AddObjBeforeFirstCond (const t_Object * po_obj);
 inline t_Position AddObjAfterLastCond (const t_Object * po_obj);

 inline t_Position DelFirstEqualObj (const t_Object * po_obj);

Spirick Tuning Reference Manual Page 62

 inline t_Position DelLastEqualObj (const t_Object * po_obj);
 inline t_Position DelFirstEqualObjCond (const t_Object * po_obj);
 inline t_Position DelLastEqualObjCond (const t_Object * po_obj);
 };

Search for Objects
bool ContainsObj (const t_Object * po_obj) const;

Returns true, if a contained object is equal to * po_obj.

t_Length CountObjs (const t_Object * po_obj) const;

Returns the number of objects which are equal to * po_obj.

t_Position SearchFirstObj (const t_Object * po_obj) const;

Returns the position of the first object which is equal to * po_obj or zero if no object was found.

t_Position SearchLastObj (const t_Object * po_obj) const;

Returns the position of the last object which is equal to * po_obj or zero if no object was found.

t_Position SearchNextObj (t_Position o_pos, const t_Object * po_obj) const;

Returns the position of the next object which is equal to * po_obj or zero if no object was found. o_pos
must be a valid position value.

t_Position SearchPrevObj (t_Position o_pos, const t_Object * po_obj) const;

Returns the position of the previous object which is equal to * po_obj or zero if no object was found.
o_pos must be a valid position value.

Access to Found Objects
t_Object * GetFirstEqualObj (const t_Object * po_obj) const;

Returns a pointer to the first object which is equal to * po_obj. There must be at least one equal object.

t_Object * GetLastEqualObj (const t_Object * po_obj) const;

Returns a pointer to the last object which is equal to * po_obj. There must be at least one equal object.

Add Objects Conditionally
t_Position AddObjCond (const t_Object * po_obj);

Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by AddObj) if no equal object was found.

t_Position AddObjBeforeFirstCond (const t_Object * po_obj);

Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by AddObjBeforeFirst) if no equal object was found.

t_Position AddObjAfterLastCond (const t_Object * po_obj);

Returns the position of the first object which is equal to * po_obj or the position of a new object (added
by AddObjAfterLast) if no equal object was found.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Spirick Tuning Reference Manual Page 63

Delete Found Objects
t_Position DelFirstEqualObj (const t_Object * po_obj);

Deletes the first object which is equal to * po_obj. There must be at least one equal object. The method
returns the position of the next object of the deleted object or zero, if the last object was deleted.

t_Position DelLastEqualObj (const t_Object * po_obj);

Deletes the last object which is equal to * po_obj. There must be at least one equal object. The method
returns the position of the next object of the deleted object or zero, if the last object was deleted.

Delete Found Objects Conditionally
t_Position DelFirstEqualObjCond (const t_Object * po_obj);

Deletes the first object which is equal to * po_obj or returns zero if no equal object was found. If an
equal object was found the method returns the position of the next object of the deleted object or zero,
if the last object was deleted.

t_Position DelLastEqualObjCond (const t_Object * po_obj);

Deletes the last object which is equal to * po_obj or returns zero if no equal object was found. If an equal
object was found the method returns the position of the next object of the deleted object or zero, if the
last object was deleted.

2.5.2 Pointer Containers (tuning/ptrcontainer.h)

A container can manage objects of many different types (e.g. ct_String, int, float). If the object type is
a pointer type, some container methods are very unhandily. The method GetObj returns a pointer to a
pointer, AddObj requires a parameter of type pointer to pointer etc.

gct_Rnd16Array <ct_String *> co_array;
gct_Rnd16Array <ct_String *>::t_Position o_pos;
ct_String * pco_str = new ct_String;
o_pos = co_array. AddObj (& pco_str);
pco_str = * co_array. GetObj (o_pos);

The class template gct_PtrContainer provides a comfortable interface for pointer containers. It maps
many methods of the basic, extended and comp-container interface and provides some additional
methods. To avoid confusions, method names contain the abbreviation Ptr (e.g. GetPtr instead of
GetObj).

Note that a pointer container can be the owner of the referenced objects or it can manage pointers to
objects which have a different owner. The method DelPtrAndObj deletes a pointer and the referenced
object. The method DelPtr simply deletes the pointer, the referenced object remains unchanged.

Note also the difference between comparing the pointers and comparing the referenced objects. In C++
language pointers can be compared. That's why the pointer container interface provides methods of the
comp-container interface. If the object type additionally provides the comparison function 'operator ==',
the pointer container can be extended by the pointer-comp-container interface (see next section).

C++ compilers generate binary code for each template instance. To reduce the size of the binary code
the Spirick pointer containers are based on containers of object type void *. With this technique, many
pointer container instances can share the same binary code.

The first template parameter t_obj is the type of the referenced objects. The second template parameter
t_container must at least contain the extended container interface, e.g. gct_Chn32DList <void *>. It is
extended by the comp-container interface and then used as the base class of the pointer container.

Spirick Tuning Reference Manual Page 64

Base Classes
gct_AnyContainer (see above 'Container Interface')
 gct_ExtContainer (see above 'Extended Container')
 gct_CompContainer (see above 'Comp-Container')

Template Declaration
template <class t_obj, class t_container>
 class gct_PtrContainer: public gct_CompContainer <t_container>
 {
 public:
 typedef t_obj t_RefObject;

 inline ~gct_PtrContainer ();

 inline t_obj * GetPtr (t_Position o_pos) const;
 inline t_obj * GetFirstPtr () const;
 inline t_obj * GetLastPtr () const;
 inline t_obj * GetNextPtr (t_Position o_pos) const;
 inline t_obj * GetPrevPtr (t_Position o_pos) const;
 inline t_obj * GetNthPtr (t_Length u_idx) const;

 inline t_Position AddPtr (const t_obj * po_obj);
 inline t_Position AddPtrBefore (t_Position o_pos, const t_obj * po_obj);
 inline t_Position AddPtrAfter (t_Position o_pos, const t_obj * po_obj);
 inline t_Position AddPtrBeforeFirst (const t_obj * po_obj);
 inline t_Position AddPtrAfterLast (const t_obj * po_obj);
 inline t_Position AddPtrBeforeNth (t_Length u_idx, const t_obj * po_obj);
 inline t_Position AddPtrAfterNth (t_Length u_idx, const t_obj * po_obj);

 inline t_Position DelPtr (t_Position o_pos);
 inline t_Position DelFirstPtr ();
 inline t_Position DelLastPtr ();
 inline t_Position DelNextPtr (t_Position o_pos);
 inline t_Position DelPrevPtr (t_Position o_pos);
 inline t_Position DelNthPtr (t_Length u_idx);
 inline void DelAllPtr ();

 inline t_Position DelPtrAndObj (t_Position o_pos);
 inline t_Position DelFirstPtrAndObj ();
 inline t_Position DelLastPtrAndObj ();
 inline t_Position DelNextPtrAndObj (t_Position o_pos);
 inline t_Position DelPrevPtrAndObj (t_Position o_pos);
 inline t_Position DelNthPtrAndObj (t_Length u_idx);
 inline void DelAllPtrAndObj ();

 inline bool ContainsPtr (const t_obj * po_obj) const;
 inline t_Length CountPtrs (const t_obj * po_obj) const;

 inline t_Position SearchFirstPtr (const t_obj * po_obj) const;
 inline t_Position SearchLastPtr (const t_obj * po_obj) const;
 inline t_Position SearchNextPtr (t_Position o_pos, const t_obj * po_obj) const;
 inline t_Position SearchPrevPtr (t_Position o_pos, const t_obj * po_obj) const;

 inline t_Position AddPtrCond (const t_obj * po_obj);
 inline t_Position AddPtrBeforeFirstCond (const t_obj * po_obj);
 inline t_Position AddPtrAfterLastCond (const t_obj * po_obj);

 inline t_Position DelFirstEqualPtr (const t_obj * po_obj);
 inline t_Position DelLastEqualPtr (const t_obj * po_obj);
 inline t_Position DelFirstEqualPtrCond (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrCond (const t_obj * po_obj);

Spirick Tuning Reference Manual Page 65

 inline t_Position DelFirstEqualPtrAndObj (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrAndObj (const t_obj * po_obj);
 inline t_Position DelFirstEqualPtrAndObjCond (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrAndObjCond (const t_obj * po_obj);
 };

// Example of an implementation
template <class t_obj, class t_container>
 inline t_obj * gct_PtrContainer <t_obj, t_container>::
 GetPtr (t_Position o_pos) const
 {
 return (t_obj *) * GetObj (o_pos);
 }

template <class t_obj, class t_container>
 inline gct_PtrContainer <t_obj, t_container>::t_Position
 gct_PtrContainer <t_obj, t_container>::
 DelPtrAndObj (t_Position o_pos)
 {
 delete GetPtr (o_pos);
 return FreeObj (o_pos);
 }

Data Types
typedef t_obj t_RefObject;

The nested type t_RefObject corresponds to the template parameter t_obj. It can be used by derived
classes.

Destructor
~gct_PtrContainer ();

The destructor of a pointer container deletes all pointers by calling the method FreeAll, the referenced
objects remain unchanged.

Access to Referenced Objects
t_obj * GetPtr (t_Position o_pos) const;

Returns a pointer to the object at position o_pos. o_pos must be a valid position value.

t_obj * GetFirstPtr () const;

Returns a pointer to the first object. The container must contain at least one pointer.

t_obj * GetLastPtr () const;

Returns a pointer to the last object. The container must contain at least one pointer.

t_obj * GetNextPtr (t_Position o_pos) const;

Returns a pointer to the next object. o_pos and Next (o_pos) must be valid position values.

t_obj * GetPrevPtr (t_Position o_pos) const;

Returns a pointer to the previous object. o_pos and Prev (o_pos) must be valid position values.

t_obj * GetNthPtr (t_Length u_idx) const;

Returns a pointer to the nth object (0 < u_idx <= GetLen).

Spirick Tuning Reference Manual Page 66

Add Pointers
t_Position AddPtr (const t_obj * po_obj);

Adds a pointer and returns the position of the new pointer. The logical position of the new pointer
depends on the container implementation.

t_Position AddPtrBefore (t_Position o_pos, const t_obj * po_obj);

Adds a pointer before a specific position and returns the position of the new pointer. If o_pos equals
zero, the new pointer is appended after the last pointer, i.e. it will be the new last pointer.

t_Position AddPtrAfter (t_Position o_pos, const t_obj * po_obj);

Adds a pointer after a specific position and returns the position of the new pointer. If o_pos equals zero,
the new pointer is inserted before the first pointer, i.e. it will be the new first pointer.

t_Position AddPtrBeforeFirst (const t_obj * po_obj);

Adds a pointer before the first pointer and returns the position of the new pointer. The new pointer will
be the new first pointer.

t_Position AddPtrAfterLast (const t_obj * po_obj);

Adds a pointer after the last pointer and returns the position of the new pointer. The new pointer will be
the new last pointer.

t_Position AddPtrBeforeNth (t_Length u_idx, const t_obj * po_obj);

Adds a pointer before the nth pointer and returns the position of the new pointer (0 < u_idx <= GetLen).

t_Position AddPtrAfterNth (t_Length u_idx, const t_obj * po_obj);

Adds a pointer after the nth pointer and returns the position of the new pointer (0 < u_idx <= GetLen).

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pointers
t_Position DelPtr (t_Position o_pos);

Deletes the pointer at position o_pos by calling the method FreeObj, the referenced object remains
unchanged. o_pos must be a valid position value. The method returns Next (o_pos), i.e. the position of the
next pointer or zero, if the last pointer was deleted.

t_Position DelFirstPtr ();

Deletes the first pointer by calling the method FreeFirstObj, the referenced object remains unchanged.
The container must contain at least one pointer. The method returns the position of the new first pointer
or zero, if the last pointer was deleted.

t_Position DelLastPtr ();

Deletes the last pointer by calling the method FreeLastObj, the referenced object remains unchanged. The
container must contain at least one pointer. The method always returns zero, because the last pointer
was deleted.

t_Position DelNextPtr (t_Position o_pos);

Deletes the pointer at position Next (o_pos) by calling the method FreeNextObj, the referenced object
remains unchanged. o_pos and Next (o_pos) must be valid position values. The method returns Next (Next

Spirick Tuning Reference Manual Page 67

(o_pos)), i.e. the position of the next pointer of the deleted pointer or zero, if the last pointer was
deleted.

t_Position DelPrevPtr (t_Position o_pos);

Deletes the pointer at position Prev (o_pos) by calling the method FreePrevObj, the referenced object
remains unchanged. o_pos and Prev (o_pos) must be valid position values. The method returns o_pos,
because it is the position of the next pointer of the deleted pointer.

t_Position DelNthPtr (t_Length u_idx);

Deletes the nth pointer (0 < u_idx <= GetLen) by calling the method FreeNthObj, the referenced object
remains unchanged. The method returns Next (Nth (u_idx)), i.e. the position of the next pointer of the
deleted pointer or zero, if the last pointer was deleted.

void DelAllPtr ();

Deletes all pointers by calling the method FreeAll, the referenced objects remain unchanged.

Delete Pointers and Referenced Objects
t_Position DelPtrAndObj (t_Position o_pos);

This method works like DelPtr and deletes the referenced object.

t_Position DelFirstPtrAndObj ();

This method works like DelFirstPtr and deletes the referenced object.

t_Position DelLastPtrAndObj ();

This method works like DelLastPtr and deletes the referenced object.

t_Position DelNextPtrAndObj (t_Position o_pos);

This method works like DelNextPtr and deletes the referenced object.

t_Position DelPrevPtrAndObj (t_Position o_pos);

This method works like DelPrevPtr and deletes the referenced object.

t_Position DelNthPtrAndObj (t_Length u_idx);

This method works like DelNthPtr and deletes the referenced object.

void DelAllPtrAndObj ();

This method works like DelAllPtr and deletes the referenced objects.

Compare Pointers
Note the difference between comparing the pointers and comparing the referenced objects. In C++
language pointers can be compared. That's why the pointer container interface provides methods of the
comp-container interface. If the object type additionally provides the comparison function 'operator ==',
the pointer container can be extended by the pointer-comp-container interface (see next section).

Search for Pointers
bool ContainsPtr (const t_obj * po_obj) const;

Returns true, if a contained pointer is equal to po_obj.

t_Length CountPtrs (const t_obj * po_obj) const;

Returns the number of pointers which are equal to po_obj.

Spirick Tuning Reference Manual Page 68

t_Position SearchFirstPtr (const t_obj * po_obj) const;

Returns the position of the first pointer which is equal to po_obj or zero if no pointer was found.

t_Position SearchLastPtr (const t_obj * po_obj) const;

Returns the position of the last pointer which is equal to po_obj or zero if no pointer was found.

t_Position SearchNextPtr (t_Position o_pos, const t_obj * po_obj) const;

Returns the position of the next pointer which is equal to po_obj or zero if no pointer was found. o_pos
must be a valid position value.

t_Position SearchPrevPtr (t_Position o_pos, const t_obj * po_obj) const;

Returns the position of the previous pointer which is equal to po_obj or zero if no pointer was found.
o_pos must be a valid position value.

Add Pointers Conditionally
t_Position AddPtrCond (const t_obj * po_obj);

Returns the position of the first pointer which is equal to po_obj or the position of a new pointer (added
by AddPtr) if no equal pointer was found.

t_Position AddPtrBeforeFirstCond (const t_obj * po_obj);

Returns the position of the first pointer which is equal to po_obj or the position of a new pointer (added
by AddPtrBeforeFirst) if no equal pointer was found.

t_Position AddPtrAfterLastCond (const t_obj * po_obj);

Returns the position of the first pointer which is equal to po_obj or the position of a new pointer (added
by AddPtrAfterLast) if no equal pointer was found.

Delete Found Pointers
t_Position DelFirstEqualPtr (const t_obj * po_obj);

Deletes the first pointer which is equal to po_obj. There must be at least one equal pointer. The method
returns the position of the next pointer of the deleted pointer or zero, if the last pointer was deleted.

t_Position DelLastEqualPtr (const t_obj * po_obj);

Deletes the last pointer which is equal to po_obj. There must be at least one equal pointer. The method
returns the position of the next pointer of the deleted pointer or zero, if the last pointer was deleted.

Delete Found Pointers Conditionally
t_Position DelFirstEqualPtrCond (const t_obj * po_obj);

Deletes the first pointer which is equal to po_obj or returns zero if no equal pointer was found. If an
equal pointer was found the method returns the position of the next pointer of the deleted pointer or
zero, if the last pointer was deleted.

t_Position DelLastEqualPtrCond (const t_obj * po_obj);

Deletes the last pointer which is equal to po_obj or returns zero if no equal pointer was found. If an equal
pointer was found the method returns the position of the next pointer of the deleted pointer or zero, if
the last pointer was deleted.

Delete Found Pointers and Referenced Objects
t_Position DelFirstEqualPtrAndObj (const t_obj * po_obj);

This method works like DelFirstEqualPtr and deletes the referenced object.

Spirick Tuning Reference Manual Page 69

t_Position DelLastEqualPtrAndObj (const t_obj * po_obj);

This method works like DelLastEqualPtr and deletes the referenced object.

Delete Found Pointers and Referenced Objects Conditionally
t_Position DelFirstEqualPtrAndObjCond (const t_obj * po_obj);

This method works like DelFirstEqualPtrCond and deletes the referenced object.

t_Position DelLastEqualPtrAndObjCond (const t_obj * po_obj);

This method works like DelLastEqualPtrCond and deletes the referenced object.

2.5.3 Pointer Container Operations

Insert, Copy and Delete Objects
The following sample code demonstrates some simple pointer container operations. The class ct_Int is
described in the section 'Sample Programs'.

ct_Int co_int = 1;
ct_Int * pco_int;
gct_AnyPtrContainer <ct_Int> co_ptrContainer;
gct_AnyPtrContainer <ct_Int>::t_Position o_pos;

// Add a new object by calling the default constructor
o_pos = co_ptrContainer. AddPtr (new ct_Int);

// Access the object and initialize it
pco_int = co_ptrContainer. GetPtr (o_pos);
(* pco_int) = 2;

// Copy an existing object into the pointer container
o_pos = co_ptrContainer. AddPtr (new ct_Int (co_int));

// Delete a single pointer and the referenced object
co_ptrContainer. DelPtrAndObj (o_pos);

Iterate Forward
The following sample code demonstrates a forward iteration over a pointer container.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

for (o_pos = co_ptrContainer. First ();
 o_pos != 0;
 o_pos = co_ptrContainer. Next (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Iterate Backward
The following sample code demonstrates a backward iteration over a pointer container.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

Spirick Tuning Reference Manual Page 70

for (o_pos = co_ptrContainer. Last ();
 o_pos != 0;
 o_pos = co_ptrContainer. Prev (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Iterate and Modify
The following sample code demonstrates how to iterate and modify a pointer container.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

for (o_pos = co_ptrContainer. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_ptrContainer. DelPtrAndObj (o_pos) :
 co_ptrContainer. Next (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Alternatively a while loop can be used.

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

o_pos = co_ptrContainer. First ();

while (o_pos != 0)
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 if (/* delete entry ? */)
 o_pos = co_ptrContainer. DelPtrAndObj (o_pos);
 else
 o_pos = co_ptrContainer. Next (o_pos);
 }

2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h)

If the object type of a pointer container provides the comparison function 'operator ==', the pointer
container can be extended by the pointer-comp-container interface. This interface is very similar to the
comp-container interface (see above). The methods of a pointer-comp-container are based on the
'operator ==' of referenced objects. To avoid confusions, method names contain the abbreviation Ref
(e.g. AddRefCond instead of AddObjCond or AddPtrCond).

The template parameter t_container must at least contain the pointer container interface, e.g.
gct_Std32PtrArray <float>. It is used as the base class of the pointer-comp-container.

Base Classes
gct_AnyContainer (see above 'Container Interface')
 gct_ExtContainer (see above 'Extended Container')
 gct_CompContainer (see above 'Comp-Container')
 gct_PtrContainer (see above 'Pointer Container')

Spirick Tuning Reference Manual Page 71

Template Declaration
template <class t_container>
 class gct_PtrCompContainer: public t_container
 {
 public:
 inline bool ContainsRef (const t_RefObject * po_obj) const;
 t_Length CountRefs (const t_RefObject * po_obj) const;

 t_Position SearchFirstRef (const t_RefObject * po_obj) const;
 t_Position SearchLastRef (const t_RefObject * po_obj) const;
 t_Position SearchNextRef (t_Position o_pos, const t_RefObject * po_obj) const;
 t_Position SearchPrevRef (t_Position o_pos, const t_RefObject * po_obj) const;

 inline t_RefObject * GetFirstEqualRef (const t_RefObject * po_obj) const;
 inline t_RefObject * GetLastEqualRef (const t_RefObject * po_obj) const;

 inline t_Position AddRefCond (const t_RefObject * po_obj);
 inline t_Position AddRefBeforeFirstCond (const t_RefObject * po_obj);
 inline t_Position AddRefAfterLastCond (const t_RefObject * po_obj);

 inline t_Position DelFirstEqualRef (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRef (const t_RefObject * po_obj);
 inline t_Position DelFirstEqualRefCond (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefCond (const t_RefObject * po_obj);

 inline t_Position DelFirstEqualRefAndObj (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefAndObj (const t_RefObject * po_obj);
 inline t_Position DelFirstEqualRefAndObjCond (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefAndObjCond (const t_RefObject * po_obj);
 };

Search for Referenced Objects
bool ContainsRef (const t_RefObject * po_obj) const;

Returns true, if a referenced object is equal to * po_obj.

t_Length CountRefs (const t_RefObject * po_obj) const;

Returns the number of referenced objects which are equal to * po_obj.

t_Position SearchFirstRef (const t_RefObject * po_obj) const;

Returns the position of the first referenced object which is equal to * po_obj or zero if no object was
found.

t_Position SearchLastRef (const t_RefObject * po_obj) const;

Returns the position of the last referenced object which is equal to * po_obj or zero if no object was
found.

t_Position SearchNextRef (t_Position o_pos, const t_RefObject * po_obj) const;

Returns the position of the next referenced object which is equal to * po_obj or zero if no object was
found. o_pos must be a valid position value.

t_Position SearchPrevRef (t_Position o_pos, const t_RefObject * po_obj) const;

Returns the position of the previous referenced object which is equal to * po_obj or zero if no object was
found. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 72

Access to Found Objects
t_RefObject * GetFirstEqualRef (const t_RefObject * po_obj) const;

Returns a pointer to the first referenced object which is equal to * po_obj. There must be at least one
equal object.

t_RefObject * GetLastEqualRef (const t_RefObject * po_obj) const;

Returns a pointer to the last referenced object which is equal to * po_obj. There must be at least one
equal object.

Add Pointers Conditionally
t_Position AddRefCond (const t_RefObject * po_obj);

Returns the position of the first referenced object which is equal to * po_obj or the position of a new
pointer (added by AddPtr) if no equal object was found.

t_Position AddRefBeforeFirstCond (const t_RefObject * po_obj);

Returns the position of the first referenced object which is equal to * po_obj or the position of a new
pointer (added by AddPtrBeforeFirst) if no equal object was found.

t_Position AddRefAfterLastCond (const t_RefObject * po_obj);

Returns the position of the first referenced object which is equal to * po_obj or the position of a new
pointer (added by AddPtrAfterLast) if no equal object was found.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pointers of Found Objects
t_Position DelFirstEqualRef (const t_RefObject * po_obj);

Deletes the pointer of the first referenced object which is equal to * po_obj. There must be at least one
equal object. The method returns the position of the next pointer of the deleted pointer or zero, if the
last pointer was deleted.

t_Position DelLastEqualRef (const t_RefObject * po_obj);

Deletes the pointer of the last referenced object which is equal to * po_obj. There must be at least one
equal object. The method returns the position of the next pointer of the deleted pointer or zero, if the
last pointer was deleted.

Delete Pointers of Found Objects Conditionally
t_Position DelFirstEqualRefCond (const t_RefObject * po_obj);

Deletes the pointer of the first referenced object which is equal to * po_obj or returns zero if no equal
object was found. If an equal object was found the method returns the position of the next pointer of
the deleted pointer or zero, if the last pointer was deleted.

t_Position DelLastEqualRefCond (const t_RefObject * po_obj);

Deletes the pointer of the last referenced object which is equal to * po_obj or returns zero if no equal
object was found. If an equal object was found the method returns the position of the next pointer of
the deleted pointer or zero, if the last pointer was deleted.

Spirick Tuning Reference Manual Page 73

Delete Pointers and Objects of Found Objects
t_Position DelFirstEqualRefAndObj (const t_RefObject * po_obj);

This method works like DelFirstEqualRef and deletes the referenced object.

t_Position DelLastEqualRefAndObj (const t_RefObject * po_obj);

This method works like DelLastEqualRef and deletes the referenced object.

Delete Pointers and Objects of Found Objects Conditionally
t_Position DelFirstEqualRefAndObjCond (const t_RefObject * po_obj);

This method works like DelFirstEqualRefCond and deletes the referenced object.

t_Position DelLastEqualRefAndObjCond (const t_RefObject * po_obj);

This method works like DelLastEqualRefCond and deletes the referenced object.

2.5.5 Map Containers (tuning/map.h)

The map container interface is an extension of the basic container interface. A map container manages
key-value pairs. The 'value' type requirements are very simple. A class type must contain a default and
a copy constructor, no other requirements have to be fulfilled. Numeric and pointer types can also be
used. The 'key' type must additionally provide the comparison function 'operator =='. So it’s possible to
search for a specific key.

A map container is based on a basic container which manages key-value pairs, e.g. gct_Std32Array
<gct_MapEntry <ct_String, ct_Int> >. The basic container is used as the base class of the map container.
Key-value type example: The type gct_MapEntry <ct_String, ct_Int> is based on the 'key' type ct_String
and the 'value' type ct_Int. The 'key' type is used as the base class of the key-value type. Numeric data
types, e.g. int or char, must be extended by the template gct_Key, e.g. gct_MapEntry <gct_Key <int>,
ct_String>. If the base container of a map container is a sorted array, the 'key' type must provide the
comparison function 'operator <'. If the base container is a hash table, the 'key' type must provide the
method GetHash.

Base Classes
gct_AnyContainer (see above 'Container Interface')
[gct_ExtContainer (optional, see above 'Extended Container')]

Template Declaration
template <class t_container>
 class gct_Map: public t_container
 {
 public:
 typedef t_Object::t_Key t_Key;
 typedef t_Object::t_Value t_Value;

 inline bool ContainsKey (t_Key o_key) const;
 t_Length CountKeys (t_Key o_key) const;

 t_Position SearchFirstKey (t_Key o_key) const;
 t_Position SearchLastKey (t_Key o_key) const;
 t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;
 t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

 inline t_Key GetKey (t_Position o_pos) const;
 inline t_Value * GetValue (t_Position o_pos) const;

Spirick Tuning Reference Manual Page 74

 inline t_Value * GetFirstValue (t_Key o_key) const;
 inline t_Value * GetLastValue (t_Key o_key) const;

 t_Position AddKeyAndValue (t_Key o_key, const t_Value * po_value = 0);
 t_Position AddKeyAndValueCond (t_Key o_key, const t_Value * po_value = 0);

 inline t_Position DelKeyAndValue (t_Position o_pos);
 inline t_Position DelFirstKeyAndValue (t_Key o_key);
 inline t_Position DelLastKeyAndValue (t_Key o_key);
 inline t_Position DelFirstKeyAndValueCond (t_Key o_key);
 inline t_Position DelLastKeyAndValueCond (t_Key o_key);
 inline void DelAllKeyAndValue ();
 };

Data Types
typedef t_Object::t_Key t_Key;

The nested type t_Key describes the 'key' type of key-value pairs.

typedef t_Object::t_Value t_Value;

The nested type t_Value describes the 'value' type of key-value pairs.

Search for Pairs
bool ContainsKey (t_Key o_key) const;

Returns true, if a contained key is equal to o_key.

t_Length CountKeys (t_Key o_key) const;

Returns the number of keys which are equal to o_key.

t_Position SearchFirstKey (t_Key o_key) const;

Returns the position of the first key-value pair whose key is equal to o_key or zero if no key was found.

t_Position SearchLastKey (t_Key o_key) const;

Returns the position of the last key-value pair whose key is equal to o_key or zero if no key was found.

t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;

Returns the position of the next key-value pair whose key is equal to o_key or zero if no key was found.
o_pos must be a valid position value.

t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

Returns the position of the previous key-value pair whose key is equal to o_key or zero if no key was
found. o_pos must be a valid position value.

Access to Key and Value
t_Key GetKey (t_Position o_pos) const;

Returns the key of the key-value pair at position o_pos. o_pos must be a valid position value.

t_Value * GetValue (t_Position o_pos) const;

Returns a pointer to the value of the key-value pair at position o_pos. o_pos must be a valid position
value.

Spirick Tuning Reference Manual Page 75

Access to Found Values
t_Value * GetFirstValue (t_Key o_key) const;

Returns a pointer to the value of the first key-value pair whose key is equal to o_key. There must be at
least one equal key.

t_Value * GetLastValue (t_Key o_key) const;

Returns a pointer to the value of the last key-value pair whose key is equal to o_key. There must be at
least one equal key.

Add Key-Value Pairs (Conditionally)
t_Position AddKeyAndValue (t_Key o_key, const t_Value * po_value = 0);

Adds a key-value pair and returns the position of the new pair. The logical position of the new pair
depends on the container implementation. If po_value equals zero, the new value is created by the
default constructor, otherwise the copy constructor is used.

t_Position AddKeyAndValueCond (t_Key o_key, const t_Value * po_value = 0);

Returns the position of the first key-value pair whose key is equal to o_key or the position of a new pair
if no equal key was found. The logical position of the new pair depends on the container
implementation. If po_value equals zero, the new value is created by the default constructor, otherwise
the copy constructor is used.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pairs
t_Position DelKeyAndValue (t_Position o_pos);

Deletes the key-value pair at position o_pos. Calls the destructor of the key-value pair and releases the
corresponding memory. o_pos must be a valid position value. The method returns Next (o_pos), i.e. the
position of the next pair or zero, if the last pair was deleted.

void DelAllKeyAndValue ();

Deletes all contained key-value pairs. Calls the destructor of the pairs and releases the corresponding
memory.

Delete Found Pairs
t_Position DelFirstKeyAndValue (t_Key o_key);

Deletes the first key-value pair whose key is equal to o_key. There must be at least one equal key. The
method returns the position of the next pair of the deleted pair or zero, if the last pair was deleted.

t_Position DelLastKeyAndValue (t_Key o_key);

Deletes the last key-value pair whose key is equal to o_key. There must be at least one equal key. The
method returns the position of the next pair of the deleted pair or zero, if the last pair was deleted.

Spirick Tuning Reference Manual Page 76

Delete Found Pairs Conditionally
t_Position DelFirstKeyAndValueCond (t_Key o_key);

Deletes the first key-value pair whose key is equal to o_key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted.

t_Position DelLastKeyAndValueCond (t_Key o_key);

Deletes the last key-value pair whose key is equal to o_key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted.

2.5.6 Pointer Map Containers (tuning/ptrmap.h)

A map container can manage 'value' objects of many different types (e.g. ct_String, int, float). If the
'value' type is a pointer type, some map container methods are very unhandily. The method GetValue
returns a pointer to a pointer, AddKeyAndValue requires a parameter of type pointer to pointer etc.

The class template gct_PtrMap provides a comfortable interface for pointer map containers. A pointer map
manages key-pointer pairs. The pointers refer to 'value' objects. The 'key' type requirements are very
simple. A class type must contain a default and a copy constructor. Numeric and pointer types can also
be used. The 'key' type must additionally provide the comparison function 'operator =='. So it’s possible
to search for a specific key.

Note that a pointer map container can be the owner of the referenced value objects or it can manage
pointers to value objects which have a different owner. The method DelKeyAndValue deletes a key-pointer
pair and the referenced value object. The method DelKey simply deletes the key-pointer pair, the
referenced value object remains unchanged.

The first template parameter t_container must be a container type which manages key-pointer pairs, e.g.
gct_Std32Array <gct_PtrMapEntry <ct_String> >. The second template parameter t_value is the type of the
value objects. The basic container is used as the base class of the pointer map container.

Key-pointer type example: The type gct_PtrMapEntry <ct_String> is based on the 'key' type ct_String. The
pointer part of the key-pointer pair is of type void *. With this technique, many pointer map container
instances can share the same binary code. The 'key' type is used as the base class of the key-pointer
type. Numeric data types, e.g. int or char, must be extended by the template gct_Key, e.g.
gct_PtrMapEntry <gct_Key <int> >. If the base container of a pointer map container is a sorted array, the
'key' type must provide the comparison function 'operator <'. If the base container is a hash table, the
'key' type must provide the method GetHash.

Base Classes
gct_AnyContainer (see above 'Container Interface')
[gct_ExtContainer (optional, see above 'Extended Container')]

Template Declaration
template <class t_container, class t_value>
 class gct_PtrMap: public t_container
 {
 public:
 typedef t_Object::t_Key t_Key;
 typedef t_value t_Value;

 inline bool ContainsKey (t_Key o_key) const;
 t_Length CountKeys (t_Key o_key) const;

Spirick Tuning Reference Manual Page 77

 t_Position SearchFirstKey (t_Key o_key) const;
 t_Position SearchLastKey (t_Key o_key) const;
 t_Position SearchNextKey (t_Position o_pos,
 t_Key o_key) const;
 t_Position SearchPrevKey (t_Position o_pos,
 t_Key o_key) const;

 inline t_Key GetKey (t_Position o_pos) const;
 inline t_Value * GetValPtr (t_Position o_pos) const;
 inline t_Value * GetFirstValPtr (t_Key o_key) const;
 inline t_Value * GetLastValPtr (t_Key o_key) const;

 t_Position AddKeyAndValPtr (t_Key o_key,
 const t_Value * po_value);
 t_Position AddKeyAndValPtrCond (t_Key o_key,
 const t_Value * po_value);

 inline t_Position DelKey (t_Position o_pos);
 inline t_Position DelFirstKey (t_Key o_key);
 inline t_Position DelLastKey (t_Key o_key);
 inline t_Position DelFirstKeyCond (t_Key o_key);
 inline t_Position DelLastKeyCond (t_Key o_key);
 inline void DelAllKey ();

 inline t_Position DelKeyAndValue (t_Position o_pos);
 inline t_Position DelFirstKeyAndValue (t_Key o_key);
 inline t_Position DelLastKeyAndValue (t_Key o_key);
 inline t_Position DelFirstKeyAndValueCond (t_Key o_key);
 inline t_Position DelLastKeyAndValueCond (t_Key o_key);
 void DelAllKeyAndValue ();
 };

Data Types
typedef t_Object::t_Key t_Key;

The nested type t_Key describes the 'key' type of key-pointer pairs.

typedef t_value t_Value;

The nested type t_Value describes the type of referenced objects of key-pointer pairs.

Search for Pairs
bool ContainsKey (t_Key o_key) const;

Returns true, if a contained key is equal to o_key.

t_Length CountKeys (t_Key o_key) const;

Returns the number of keys which are equal to o_key.

t_Position SearchFirstKey (t_Key o_key) const;

Returns the position of the first key-pointer pair whose key is equal to o_key or zero if no key was found.

t_Position SearchLastKey (t_Key o_key) const;

Returns the position of the last key-pointer pair whose key is equal to o_key or zero if no key was found.

t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;

Returns the position of the next key-pointer pair whose key is equal to o_key or zero if no key was
found. o_pos must be a valid position value.

Spirick Tuning Reference Manual Page 78

t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

Returns the position of the previous key-pointer pair whose key is equal to o_key or zero if no key was
found. o_pos must be a valid position value.

Access to Key and Value
t_Key GetKey (t_Position o_pos) const;

Returns the key of the key-pointer pair at position o_pos. o_pos must be a valid position value.

t_Value * GetValPtr (t_Position o_pos) const;

Returns a pointer to the referenced value object of the key-pointer pair at position o_pos. o_pos must be a
valid position value.

Access to Found Values
t_Value * GetFirstValPtr (t_Key o_key) const;

Returns a pointer to the referenced value object of the first key-pointer pair whose key is equal to o_key.
There must be at least one equal key.

t_Value * GetLastValPtr (t_Key o_key) const;

Returns a pointer to the referenced value object of the last key-pointer pair whose key is equal to o_key.
There must be at least one equal key.

Add Key-Pointer Pairs (Conditionally)
t_Position AddKeyAndValPtr (t_Key o_key, const t_Value * po_value);

Adds a key-pointer pair and returns the position of the new pair. The logical position of the new pair
depends on the container implementation.

t_Position AddKeyAndValPtrCond (t_Key o_key, const t_Value * po_value);

Returns the position of the first key-pointer pair whose key is equal to o_key or the position of a new pair
if no equal key was found. The logical position of the new pair depends on the container
implementation.

Return Value of Delete Methods
Delete methods always return the position of the successor of the deleted entry. With this technique, a
container can be iterated and modified at the same time. If the last object was deleted, the return value
equals zero.

Delete Pairs
t_Position DelKey (t_Position o_pos);

Deletes the key-pointer pair at position o_pos. Calls the destructor of the key-pointer pair and releases
the corresponding memory. The referenced value object remains unchanged. o_pos must be a valid
position value. The method returns Next (o_pos), i.e. the position of the next pair or zero, if the last pair
was deleted.

void DelAllKey ();

Deletes all contained key-pointer pairs. Calls the destructor of the pairs and releases the corresponding
memory. The referenced value objects remain unchanged.

Spirick Tuning Reference Manual Page 79

Delete Found Pairs
t_Position DelFirstKey (t_Key o_key);

Deletes the first key-pointer pair whose key is equal to o_key. The referenced value object remains
unchanged. There must be at least one equal key. The method returns the position of the next pair of
the deleted pair or zero, if the last pair was deleted.

t_Position DelLastKey (t_Key o_key);

Deletes the last key-pointer pair whose key is equal to o_key. The referenced value object remains
unchanged. There must be at least one equal key. The method returns the position of the next pair of
the deleted pair or zero, if the last pair was deleted.

Delete Found Pairs Conditionally
t_Position DelFirstKeyCond (t_Key o_key);

Deletes the first key-pointer pair whose key is equal to o_key or returns zero if no equal key was found.
If an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted. The referenced value object remains unchanged.

t_Position DelLastKeyCond (t_Key o_key);

Deletes the last key-pointer pair whose key is equal to o_key or returns zero if no equal key was found. If
an equal key was found the method returns the position of the next pair of the deleted pair or zero, if
the last pair was deleted. The referenced value object remains unchanged.

Delete Pairs and Referenced Objects
t_Position DelKeyAndValue (t_Position o_pos);

This method works like DelKey and deletes the referenced value object.

void DelAllKeyAndValue ();

This method works like DelAllKey and deletes the referenced value objects.

Delete Found Pairs and Referenced Objects
t_Position DelFirstKeyAndValue (t_Key o_key);

This method works like DelFirstKey and deletes the referenced value object.

t_Position DelLastKeyAndValue (t_Key o_key);

This method works like DelLastKey and deletes the referenced value object.

Delete Found Pairs and Referenced Objects Conditionally
t_Position DelFirstKeyAndValueCond (t_Key o_key);

This method works like DelFirstKeyCond and deletes the referenced value object.

t_Position DelLastKeyAndValueCond (t_Key o_key);

This method works like DelLastKeyCond and deletes the referenced value object.

Spirick Tuning Reference Manual Page 80

2.6 Pointer Container Instances

2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h)

Some template instances are predefined to easily use pointer array containers. The macro
PTR_ARRAY_DCLS(Obj) generates for each wrapper class of a global store one pointer array template.

The macro

PTR_ARRAY_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_PtrArray:
 public gct_PtrContainer <t_obj, gct_Any_Array <void *> > { };
template <class t_obj> class gct_Any8PtrArray:
 public gct_PtrContainer <t_obj, gct_Any8Array <void *> > { };
template <class t_obj> class gct_Any16PtrArray:
 public gct_PtrContainer <t_obj, gct_Any16Array <void *> > { };
template <class t_obj> class gct_Any32PtrArray:
 public gct_PtrContainer <t_obj, gct_Any32Array <void *> > { };

Every directory of a global store contains a file 'ptrarray.h'.

The file 'tuning/std/ptrarray.h' contains the following declarations:

template <class t_obj> class gct_Std_PtrArray;
template <class t_obj> class gct_Std8PtrArray;
template <class t_obj> class gct_Std16PtrArray;
template <class t_obj> class gct_Std32PtrArray;

The file 'tuning/rnd/ptrarray.h' contains the following declarations:

template <class t_obj> class gct_Rnd_PtrArray;
template <class t_obj> class gct_Rnd8PtrArray;
template <class t_obj> class gct_Rnd16PtrArray;
template <class t_obj> class gct_Rnd32PtrArray;

The file 'tuning/chn/ptrarray.h' contains the following declarations:

template <class t_obj> class gct_Chn_PtrArray;
template <class t_obj> class gct_Chn8PtrArray;
template <class t_obj> class gct_Chn16PtrArray;
template <class t_obj> class gct_Chn32PtrArray;

2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)

Some template instances are predefined to easily use pointer list containers. The macro
PTR_DLIST_DCLS(Obj) generates for each wrapper class of a global store one pointer list template.

The macro

PTR_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_PtrDList:
 public gct_PtrContainer <t_obj, gct_Any_DList <void *> > { };

Spirick Tuning Reference Manual Page 81

template <class t_obj> class gct_Any8PtrDList:
 public gct_PtrContainer <t_obj, gct_Any8DList <void *> > { };
template <class t_obj> class gct_Any16PtrDList:
 public gct_PtrContainer <t_obj, gct_Any16DList <void *> > { };
template <class t_obj> class gct_Any32PtrDList:
 public gct_PtrContainer <t_obj, gct_Any32DList <void *> > { };

Every directory of a global store contains a file 'ptrdlist.h'.

The file 'tuning/std/ptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_PtrDList;
template <class t_obj> class gct_Std8PtrDList;
template <class t_obj> class gct_Std16PtrDList;
template <class t_obj> class gct_Std32PtrDList;

The file 'tuning/rnd/ptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_PtrDList;
template <class t_obj> class gct_Rnd8PtrDList;
template <class t_obj> class gct_Rnd16PtrDList;
template <class t_obj> class gct_Rnd32PtrDList;

The file 'tuning/chn/ptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_PtrDList;
template <class t_obj> class gct_Chn8PtrDList;
template <class t_obj> class gct_Chn16PtrDList;
template <class t_obj> class gct_Chn32PtrDList;

2.6.3 Pointer Sorted Array Instances
(tuning/xxx/ptrsortedarray.h)

Some template instances are predefined to easily use pointer sorted array containers. The macro
PTR_SORTEDARRAY_DCLS(Obj) generates for each wrapper class of a global store one pointer sorted array
template.

The macro

PTR_SORTEDARRAY_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any_SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any8PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any8SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any16PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any16SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any32PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any32SortedArray <gct_SortedArrayRef <t_obj> > > { };

Every directory of a global store contains a file 'ptrsortedarray.h'.

The file 'tuning/std/ptrsortedarray.h' contains the following declarations:

template <class t_obj> class gct_Std_PtrSortedArray;
template <class t_obj> class gct_Std8PtrSortedArray;
template <class t_obj> class gct_Std16PtrSortedArray;
template <class t_obj> class gct_Std32PtrSortedArray;

Spirick Tuning Reference Manual Page 82

The file 'tuning/rnd/ptrsortedarray.h' contains the following declarations:

template <class t_obj> class gct_Rnd_PtrSortedArray;
template <class t_obj> class gct_Rnd8PtrSortedArray;
template <class t_obj> class gct_Rnd16PtrSortedArray;
template <class t_obj> class gct_Rnd32PtrSortedArray;

The file 'tuning/chn/ptrsortedarray.h' contains the following declarations:

template <class t_obj> class gct_Chn_PtrSortedArray;
template <class t_obj> class gct_Chn8PtrSortedArray;
template <class t_obj> class gct_Chn16PtrSortedArray;
template <class t_obj> class gct_Chn32PtrSortedArray;

2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h)

Some template instances are predefined to easily use pointer hash table containers. The macro
PTR_HASHTABLE_DCLS(Obj) generates for each wrapper class of a global store one pointer hash table
template.

The macro

PTR_HASHTABLE_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any_HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any8PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any8HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any16PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any16HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any32PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any32HashTable <gct_HashTableRef <t_obj> > > { };

Every directory of a global store contains a file 'ptrhashtable.h'.

The file 'tuning/std/ptrhashtable.h' contains the following declarations:

template <class t_obj> class gct_Std_PtrHashTable;
template <class t_obj> class gct_Std8PtrHashTable;
template <class t_obj> class gct_Std16PtrHashTable;
template <class t_obj> class gct_Std32PtrHashTable;

The file 'tuning/rnd/ptrhashtable.h' contains the following declarations:

template <class t_obj> class gct_Rnd_PtrHashTable;
template <class t_obj> class gct_Rnd8PtrHashTable;
template <class t_obj> class gct_Rnd16PtrHashTable;
template <class t_obj> class gct_Rnd32PtrHashTable;

The file 'tuning/chn/ptrhashtable.h' contains the following declarations:

template <class t_obj> class gct_Chn_PtrHashTable;
template <class t_obj> class gct_Chn8PtrHashTable;
template <class t_obj> class gct_Chn16PtrHashTable;
template <class t_obj> class gct_Chn32PtrHashTable;

Spirick Tuning Reference Manual Page 83

2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)

Some template instances are predefined to easily use block pointer list containers. The macro
BLOCKPTR_DLIST_DCLS(Obj) generates for each wrapper class of a global store one block pointer list
template.

The macro

BLOCKPTR_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any_BlockDList <void *> > { };
template <class t_obj> class gct_Any8BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any8BlockDList <void *> > { };
template <class t_obj> class gct_Any16BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any16BlockDList <void *> > { };
template <class t_obj> class gct_Any32BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any32BlockDList <void *> > { };

Every directory of a global store contains a file 'blockptrdlist.h'.

The file 'tuning/std/blockptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_BlockPtrDList;
template <class t_obj> class gct_Std8BlockPtrDList;
template <class t_obj> class gct_Std16BlockPtrDList;
template <class t_obj> class gct_Std32BlockPtrDList;

The file 'tuning/rnd/blockptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_BlockPtrDList;
template <class t_obj> class gct_Rnd8BlockPtrDList;
template <class t_obj> class gct_Rnd16BlockPtrDList;
template <class t_obj> class gct_Rnd32BlockPtrDList;

The file 'tuning/chn/blockptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_BlockPtrDList;
template <class t_obj> class gct_Chn8BlockPtrDList;
template <class t_obj> class gct_Chn16BlockPtrDList;
template <class t_obj> class gct_Chn32BlockPtrDList;

2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h)

Some template instances are predefined to easily use ref pointer list containers. The macro
REFPTR_DLIST_DCLS(Obj) generates for each wrapper class of a global store one ref pointer list template.

The macro

REFPTR_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any_RefDList <void *> > { };
template <class t_obj> class gct_Any8RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any8RefDList <void *> > { };
template <class t_obj> class gct_Any16RefPtrDList:

Spirick Tuning Reference Manual Page 84

 public gct_PtrContainer <t_obj, gct_Any16RefDList <void *> > { };
template <class t_obj> class gct_Any32RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any32RefDList <void *> > { };

Every directory of a global store contains a file 'refptrdlist.h'.

The file 'tuning/std/refptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_RefPtrDList;
template <class t_obj> class gct_Std8RefPtrDList;
template <class t_obj> class gct_Std16RefPtrDList;
template <class t_obj> class gct_Std32RefPtrDList;

The file 'tuning/rnd/refptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Rnd_RefPtrDList;
template <class t_obj> class gct_Rnd8RefPtrDList;
template <class t_obj> class gct_Rnd16RefPtrDList;
template <class t_obj> class gct_Rnd32RefPtrDList;

The file 'tuning/chn/refptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_RefPtrDList;
template <class t_obj> class gct_Chn8RefPtrDList;
template <class t_obj> class gct_Chn16RefPtrDList;
template <class t_obj> class gct_Chn32RefPtrDList;

2.6.7 Block-Ref Pointer List Instances
(tuning/xxx/blockrefptrdlist.h)

Some template instances are predefined to easily use block-ref pointer list containers. The macro
BLOCKREFPTR_DLIST_DCLS(Obj) generates for each wrapper class of a global store one block-ref pointer list
template.

The macro

BLOCKREFPTR_DLIST_DCLS (Any)

expands to:

template <class t_obj> class gct_Any_BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any_BlockRefDList <void *> > { };
template <class t_obj> class gct_Any8BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any8BlockRefDList <void *> > { };
template <class t_obj> class gct_Any16BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any16BlockRefDList <void *> > { };
template <class t_obj> class gct_Any32BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any32BlockRefDList <void *> > { };

Every directory of a global store contains a file 'blockrefptrdlist.h'.

The file 'tuning/std/blockrefptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Std_BlockRefPtrDList;
template <class t_obj> class gct_Std8BlockRefPtrDList;
template <class t_obj> class gct_Std16BlockRefPtrDList;
template <class t_obj> class gct_Std32BlockRefPtrDList;

The file 'tuning/rnd/blockrefptrdlist.h' contains the following declarations:

Spirick Tuning Reference Manual Page 85

template <class t_obj> class gct_Rnd_BlockRefPtrDList;
template <class t_obj> class gct_Rnd8BlockRefPtrDList;
template <class t_obj> class gct_Rnd16BlockRefPtrDList;
template <class t_obj> class gct_Rnd32BlockRefPtrDList;

The file 'tuning/chn/blockrefptrdlist.h' contains the following declarations:

template <class t_obj> class gct_Chn_BlockRefPtrDList;
template <class t_obj> class gct_Chn8BlockRefPtrDList;
template <class t_obj> class gct_Chn16BlockRefPtrDList;
template <class t_obj> class gct_Chn32BlockRefPtrDList;

2.7 Overview of Container Instances

2.7.1 Predefined Template Instances

This section describes the naming convention of predefined template instances. A predefined template
name consists of 7 parts.

1. Prefix

A predefined container name begins with the prefix gct_.

2. Global Store

Predefined containers allocate memory from one of the global store objects: Std, Rnd or Chn.

3. Length Type

The nested type t_Length describes the number of contained objects, examples are t_UInt, t_UInt8,
t_UInt16 and t_UInt32. The corresponding abbreviations are _, 8, 16 and 32.

4. Optional Block

If a block store is used to implement a list container, the name will contain the abbreviation Block.

5. Optional Ref

If a ref-store is used to implement a list container, the name will contain the abbreviation Ref.

6. Optional Ptr

If the container is a pointer container, the name will contain the abbreviation Ptr.

7. Container Type

A predefined container name ends with the abbreviation for the container type: Array, DList, SortedArray
or HashTable.

The following table summarizes the naming convention.

Spirick Tuning Reference Manual Page 86

Prefix Glob. Store t_Length Opt. Block Opt. Ref Opt. Ptr Cont. Type

gct_ Std _ Block Ref Ptr Array

Rnd 8 - - - DList

Chn 16 SortedArray

32 HashTable

2.7.2 User Defined Container Templates

In addition to the predefined containers, various other container templates can be defined. Predefined
containers are based on the block template gct_Block. The alternative block implementations
gct_FixBlock, gct_MiniBlock and gct_ResBlock can also be used. It is recommended to use the same naming
convention as the predefined containers. The following sample code demonstrates how to use the block
template gct_MiniBlock to implement some container templates.

typedef gct_EmptyBaseMiniBlock <ct_Chn_Store> ct_Chn_MiniBlock;
typedef gct_EmptyBaseMiniBlock <ct_Chn32Store> ct_Chn32MiniBlock;
typedef gct_BlockStore <ct_PageBlock, gct_CharBlock <ct_Chn_MiniBlock, char> > ct_Chn_PageBlockStore;

template <class t_obj>
 class gct_Chn_MiniArray: public gct_ExtContainer
 <gct_FixItemArray <t_obj, ct_Chn_MiniBlock> > { };

template <class t_obj>
 class gct_Chn_MiniSortedArray: public gct_ExtContainer
 <gct_FixItemSortedArray <t_obj, ct_Chn_MiniBlock> > { };

template <class t_obj>
 class gct_Chn_MiniPtrArray:
 public gct_PtrContainer <t_obj, gct_Chn_MiniArray <void *> > { };

template <class t_obj>
 class gct_Chn32MiniHashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Chn32MiniBlock> > { };

template <class t_obj>
 class gct_Chn32MiniPtrHashTable:
 public gct_PtrContainer <t_obj, gct_Chn32MiniHashTable
 <gct_HashTableRef <t_obj> > > { };

2.8 Collections

2.8.1 Abstract Object (tuning/object.hpp)

Containers and collections are two different concepts to manage sets of C++ objects. A container
manages a uniform set of objects. It also contains the objects itself, i.e. the underlying memory. A
collection can manage a polymorphic set of objects which are derived from a common base class. All
objects to be used by the Spirick collection classes must inherit from the abstract base class ct_Object.

Class Declaration
class ct_Object

Spirick Tuning Reference Manual Page 87

 {
public:
 virtual ~ct_Object ();
 virtual bool operator < (const ct_Object & co_comp) const;
 virtual t_UInt GetHash () const;
 };

Methods
~ct_Object ();

The virtual destructor ensures type-safe destruction of derived classes.

bool operator < (const ct_Object & co_comp) const;

The comparison function 'operator <' is used by the collection class ct_SortedArray.

t_UInt GetHash () const;

The method GetHash is used by hash table containers.

2.8.2 Abstract Collection (tuning/collection.hpp)

The collection interface is identical to the pointer container interface (see above 'Pointer Containers').
The following differences exist between pointer containers and collections:
- Pointer containers are templates, collections are classes.
- Pointer containers can manage pointers of arbitrary type, collections manage pointers to ct_Object.

All collections are derived from the abstract base class ct_Collection, all methods are virtual. A specific
collection class is implemented by using the methods of a specific pointer container.

Base Class
ct_Object (see above 'Abstract Object')

Class Declaration
class ct_Collection: public ct_Object
 {
public:
 typedef t_UInt t_Length;
 typedef t_UInt t_Position;

 virtual bool IsEmpty () const = 0;
 virtual t_Length GetLen () const = 0;

 virtual t_Position First () const = 0;
 virtual t_Position Last () const = 0;
 virtual t_Position Next (t_Position o_pos) const = 0;
 virtual t_Position Prev (t_Position o_pos) const = 0;
 virtual t_Position Nth (t_Length u_idx) const = 0;

 virtual ct_Object * GetPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetFirstPtr () const = 0;
 virtual ct_Object * GetLastPtr () const = 0;
 virtual ct_Object * GetNextPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetPrevPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetNthPtr (t_Length u_idx) const = 0;

 virtual t_Position AddPtr (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBefore (t_Position o_pos, const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfter (t_Position o_pos, const ct_Object * po_obj) = 0;

Spirick Tuning Reference Manual Page 88

 virtual t_Position AddPtrBeforeFirst (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterLast (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBeforeNth (t_Length u_idx, const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterNth (t_Length u_idx, const ct_Object * po_obj) = 0;

 virtual t_Position DelPtr (t_Position o_pos) = 0;
 virtual t_Position DelFirstPtr () = 0;
 virtual t_Position DelLastPtr () = 0;
 virtual t_Position DelNextPtr (t_Position o_pos) = 0;
 virtual t_Position DelPrevPtr (t_Position o_pos) = 0;
 virtual t_Position DelNthPtr (t_Length u_idx) = 0;
 virtual void DelAllPtr () = 0;

 virtual t_Position DelPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelFirstPtrAndObj () = 0;
 virtual t_Position DelLastPtrAndObj () = 0;
 virtual t_Position DelNextPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelPrevPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelNthPtrAndObj (t_Length u_idx) = 0;
 virtual void DelAllPtrAndObj () = 0;

 virtual bool ContainsPtr (const ct_Object * po_obj) const = 0;
 virtual t_Length CountPtrs (const ct_Object * po_obj) const = 0;

 virtual t_Position SearchFirstPtr (const ct_Object * po_obj) const = 0;
 virtual t_Position SearchLastPtr (const ct_Object * po_obj) const = 0;
 virtual t_Position SearchNextPtr (t_Position o_pos, const ct_Object * po_obj) const = 0;
 virtual t_Position SearchPrevPtr (t_Position o_pos, const ct_Object * po_obj) const = 0;

 virtual t_Position AddPtrCond (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBeforeFirstCond (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterLastCond (const ct_Object * po_obj) = 0;

 virtual t_Position DelFirstEqualPtr (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtr (const ct_Object * po_obj) = 0;
 virtual t_Position DelFirstEqualPtrCond (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrCond (const ct_Object * po_obj) = 0;

 virtual t_Position DelFirstEqualPtrAndObj (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrAndObj (const ct_Object * po_obj) = 0;
 virtual t_Position DelFirstEqualPtrAndObjCond (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrAndObjCond (const ct_Object * po_obj) = 0;
 };

2.8.3 Collection Operations

Insert, Copy and Delete Objects
The following sample code demonstrates some simple collection operations. The class ct_Int is
described in the section 'Sample Programs'.

ct_Int co_int = 1;
ct_Int * pco_int;
ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

// Add a new object by calling the default constructor
o_pos = co_collection. AddPtr (new ct_Int);

// Access the object and initialize it
pco_int = dynamic_cast <ct_Int *> (co_collection. GetPtr (o_pos));
(* pco_int) = 2;

Spirick Tuning Reference Manual Page 89

// Copy an existing object into the collection
o_pos = co_collection. AddPtr (new ct_Int (co_int));

// Delete a single pointer and the referenced object
co_collection. DelPtrAndObj (o_pos);

Iterate Forward
The following sample code demonstrates a forward iteration over a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. First ();
 o_pos != 0;
 o_pos = co_collection. Next (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Iterate Backward
The following sample code demonstrates a backward iteration over a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. Last ();
 o_pos != 0;
 o_pos = co_collection. Prev (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Iterate and Modify
The following sample code demonstrates how to iterate and modify a collection.

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_collection. DelPtrAndObj (o_pos) :
 co_collection. Next (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Alternatively a while loop can be used.

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

o_pos = co_collection. First ();

while (o_pos != 0)
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);

Spirick Tuning Reference Manual Page 90

 // ...
 if (/* delete entry ? */)
 o_pos = co_collection. DelPtrAndObj (o_pos);
 else
 o_pos = co_collection. Next (o_pos);
 }

2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp)

The ref-collection interface is identical to the ref-list interface (see above 'Ref-Lists', template
gct_RefDList). A specific ref-collection class is implemented by using the methods of a specific ref
pointer list, e.g. gct_Chn_RefPtrDList <ct_Object>.

Base Classes
ct_Object (see above 'Abstract Object')
 ct_Collection (see above 'Abstract Collection')

Class Declaration
class ct_RefCollection: public ct_Collection
 {
public:
 virtual void IncRef (t_Position o_pos) = 0;
 virtual void DecRef (t_Position o_pos) = 0;
 virtual t_RefCount GetRef (t_Position o_pos) const = 0;
 virtual bool IsAlloc (t_Position o_pos) const = 0;
 virtual bool IsFree (t_Position o_pos) const = 0;
 };

2.8.5 Predefined Collections

Some collection classes are predefined to easily use the collection and ref-collection interfaces. The
macro COLLMAP_DCL declares a collection class. The macro COLLMAP_DEF generates the implementation of the
class methods using a pointer container ('tuning/collmap.hpp'). The macros REFCOLLMAP_DCL and
REFCOLLMAP_DEF are used to declare and implement ref-collections ('tuning/refcollmap.hpp'). The header
file of a collection class does not include any container header file.

Implementation Compile Runtime

Container templates,
inline methods

slower faster

Collection virtual methods faster slower

The macro

COLLMAP_DCL (Array)

is located in a header file and expands to:

class ct_Array: public ct_Collection
 {
 // ...
 };

Spirick Tuning Reference Manual Page 91

The macro COLLMAP_DEF is located in a cpp file. Predefined collection and ref-collection classes are based
on pointer containers of type gct_Chn_....

#include "tuning/chn/ptrarray.h"
COLLMAP_DEF (Array, gct_Chn_PtrArray)

The file 'tuning/array.hpp' contains the following declaration:

class ct_Array: public ct_Collection { /*...*/ };

The file 'tuning/dlist.hpp' contains the following declaration:

class ct_DList: public ct_Collection { /*...*/ };

The file 'tuning/sortedarray.hpp' contains the following declaration:

class ct_SortedArray: public ct_Collection { /*...*/ };

The file 'tuning/blockdlist.hpp' contains the following declaration:

class ct_BlockDList: public ct_Collection { /*...*/ };

The file 'tuning/refdlist.hpp' contains the following declaration:

class ct_RefDList: public ct_RefCollection { /*...*/ };

The file 'tuning/blockrefdlist.hpp' contains the following declaration:

class ct_BlockRefDList: public ct_RefCollection { /*...*/ };

Spirick Tuning Reference Manual Page 92

3 STRINGS AND UTILITIES

3.1 System Interface

3.1.1 Resource Errors (tuning/sys/creserror.hpp)

This enum defines different resource errors.

Enumeration
enum et_ResError
 {
 ec_ResOK = 0,
 ec_ResUnknownError,
 ec_ResUninitialized,
 ec_ResAlreadyInitialized,
 ec_ResInvalidKey,
 ec_ResInvalidValue,
 ec_ResNoKey,
 ec_ResAlreadyExists,
 ec_ResAccessDenied,
 ec_ResNotFound,
 ec_ResLockCountMismatch,
 ec_ResLockFailed,
 ec_ResUnlockFailed,
 ec_ResMemMapFailed,
 ec_ResUnmapFailed,
 ec_ResQuerySizeFailed
 };

ec_ResOK

No errors occured.

ec_ResUnknownError

Unknown error.

ec_ResUninitialized

Attempt to use an uninitialized object.

ec_ResAlreadyInitialized

Attempt to reinitialize an initialized object.

ec_ResInvalidKey

Invalid key.

ec_ResInvalidValue

Invalid function parameter.

ec_ResNoKey

Attempt to use an object without a key.

Spirick Tuning Reference Manual Page 93

ec_ResAlreadyExists

Object with a specific key already exists.

ec_ResAccessDenied

Access denied.

ec_ResNotFound

Object with a specific key not found.

ec_ResLockCountMismatch

Mutex lock/unlock mismatch.

ec_ResLockFailed

Mutex lock failed.

ec_ResUnlockFailed

Mutex unlock failed.

ec_ResMemMapFailed

Shared memory mapping failed.

ec_ResUnmapFailed

Shared memory unmapping failed.

ec_ResQuerySizeFailed

Query shared memory size failed.

3.1.2 Character and String Conversion (tuning/sys/cstring.hpp)

This section describes several character and string conversion functions. Each 8-bit character function
has a matching wide character version. Length parameters refer to the number of characters, not to the
size in bytes.

The character case conversion functions are implemented in two different ways. The first
implementation (tl_ToUpper/tl_ToLower) is very fast. It uses the Windows-1252 character set (this is a
superset of ISO 8859-1 (Latin-1)). These functions use a static conversion table independent of the
current locale. This implementation is not compatible with UTF strings.

The second implementation (tl_ToUpper2/tl_ToLower2) uses fast, wide character based system calls (MS
Windows: CharUpperW, Linux: towupper). The matching 8-bit character versions use a temporary wide
character string. This implementation is partially compatible with UTF strings (see also next section).

Multibyte strings (char) are partially compatible with UTF-8. Wide character strings (wchar_t) are partially
compatible with UTF-16 (MS Windows: 16 bit, Linux: 16 or 32 bit). See next section for full UTF
compatible functions. The conversion between multibyte and wide character strings consists of two
steps: calculate the size of the target buffer and perform the conversion. The conversion functions rely
on corresponding system functions (e.g. MS Windows: MultiByteToWideChar, Linux: mbstowcs).

Functions
char tl_ToUpper (char c);
wchar_t tl_ToUpper (wchar_t c);

Converts a single character to upper case (Windows-1252).

Spirick Tuning Reference Manual Page 94

char tl_ToLower (char c);
wchar_t tl_ToLower (wchar_t c);

Converts a single character to lower case (Windows-1252).

bool tl_ToUpper (char * pc_str);
bool tl_ToUpper (wchar_t * pc_str);

Converts a null-terminated string to upper case (Windows-1252).

bool tl_ToLower (char * pc_str);
bool tl_ToLower (wchar_t * pc_str);

Converts a null-terminated string to lower case (Windows-1252).

wchar_t tl_ToUpper2 (wchar_t c);

Converts a single character to upper case (partially UTF compatible).

wchar_t tl_ToLower2 (wchar_t c);

Converts a single character to lower case (partially UTF compatible).

bool tl_ToUpper2 (char * pc_str);
bool tl_ToUpper2 (wchar_t * pc_str);

Converts a null-terminated string to upper case (partially UTF compatible).

bool tl_ToLower2 (char * pc_str);
bool tl_ToLower2 (wchar_t * pc_str);

Converts a null-terminated string to lower case (partially UTF compatible).

t_UInt tl_StringLength (const char * pc);
t_UInt tl_StringLength (const wchar_t * pc);

Calculates the length of a string up to, but not including the terminating null character.

unsigned tl_StringHash (const char * pc, t_UInt u_length);
unsigned tl_StringHash (const wchar_t * pc, t_UInt u_length);

Calculates the string’s hash value.

t_UInt tl_MbConvertCount (wchar_t *, const char * pc_src);

Counts the number of wide characters inclusive the terminating null character to convert a null-
terminated multibyte string. The type of the first parameter is used to resolve overloaded functions, the
parameter value is not used.

bool tl_MbConvert (wchar_t * pc_dst, const char * pc_src, t_UInt u_count);

Converts a null-terminated multibyte string to a null-terminated wide character string. u_count is the wide
character size of the destination buffer.

t_UInt tl_MbConvertCount (char *, const wchar_t * pc_src);

Counts the number of 8-bit characters inclusive the terminating null character to convert a null-
terminated wide character string. The type of the first parameter is used to resolve overloaded
functions, the parameter value is not used.

bool tl_MbConvert (char * pc_dst, const wchar_t * pc_src, t_UInt u_count);

Converts a null-terminated wide character string to a null-terminated multibyte string. u_count is the 8-bit
character size of the destination buffer.

Spirick Tuning Reference Manual Page 95

Appropriate Classes
The classes ct_String and ct_WString rely on the global functions of this section.

3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)

The implementation of multibyte and wide character functions (previous section) relies on corresponding
system functions (e.g. MS Windows: MultiByteToWideChar, Linux: mbstowcs). These functions are partially
compatible with UTF strings, and the runtime behavior is OS and locale dependent.

The conversion functions of this section don’t use any external resources. The algorithms are fully
compatible with the UTF encodings, and the runtime behavior is OS and locale independent. They work
on null-terminated and non-null-terminated strings. In case of an UTF format error, a precise error code
and the precise error position are returned.

Enumeration
enum et_UtfError
 {
 ec_UtfOK = 0,
 ec_UtfMissingNull, // Missing null character
 ec_UtfNullInside, // Null character inside of string
 ec_UtfMbMissingStart, // Multibyte (10xx xxxx) without startbyte (11xx xxxx)
 ec_UtfMbInvalidStart, // Invalid startbyte (1111 1xxx)
 ec_UtfMbExpected, // Multibyte (10xx xxxx) expected
 ec_UtfMbEnd, // String end in multibyte sequence
 ec_UtfWideRange, // Wide character out of range
 ec_UtfSurrogate, // UTF-16 surrogate in wide character
 ec_UtfHighSurrExpected, // High surrogate expected
 ec_UtfLowSurrExpected, // Low surrogate expected
 ec_UtfSurrEnd, // String end in surrogate
 ec_UtfDestTooSmall, // Destination buffer size too small
 ec_UtfDestTooLarge, // Destination buffer size too large
 ec_UtfEOS, // End of string
 ec_UtfLastError
 };

An UTF-8 character is of type t_UInt8, an UTF-16 character is of type t_UInt16, and an UTF-32 character
is of type t_UInt32. Length parameters refer to the number of characters, not to the size in bytes.

The following UTF conversions are implemented: UTF-8 <-> UTF-32, UTF-16 <-> UTF-32 and UTF-8 <->
UTF-16. A string conversion consists of two steps: calculate the size of the target buffer and perform
the conversion. If the parameter b_null equals true, the conversion includes the terminating null
character.

The length functions count the number of UTF characters (inclusive the terminating null character, if the
parameter b_null equals true). The upper/lower functions convert UTF strings to upper/lower case. The
conversion is done for UTF characters of the Basic Multilingual Plane (< 0x10000) which don’t change the
size.

If the source pointer pu_src is of type 'reference to pointer', the parameter is used to store the error
position in case of an UTF error. If the parameter b_null equals true, the string must be terminated by a
null character, and inside of the string null characters are not allowed.

Spirick Tuning Reference Manual Page 96

Functions
et_UtfError tl_UtfConvertCount (t_UIntY *, t_UInt & u_dstLen, const t_UIntX * & pu_src, t_UInt u_srcLen, bool
b_null = true);

Counts the number of UInt-Y characters to convert the UTF-X string (pu_src, u_srcLen) to UTF-Y, and
stores the result in u_dstLen. The type of the first parameter is used to resolve overloaded functions, the
parameter value is not used.

et_UtfError tl_UtfConvert (t_UIntY * pu_dst, t_UInt u_dstLen, const t_UIntX * pu_src, t_UInt u_srcLen, bool
b_null = true);

Converts the UTF-X string (pu_src, u_srcLen) to the destination buffer (pu_dst, u_dstLen) of type UTF-Y.

et_UtfError tl_UtfLength (t_UInt & u_len, const t_UIntX * & pu_src, t_UInt u_srcLen, bool b_null = true);

Counts the number of UTF characters of the UTF-X string (pu_src, u_srcLen) and store the result in u_len.

et_UtfError tl_UtfToUpper (t_UIntX * & pu_src, t_UInt u_srcLen);

Converts the UTF-X string (pu_src, u_srcLen) to upper case.

et_UtfError tl_UtfToLower (t_UIntX * & pu_src, t_UInt u_srcLen);

Converts the UTF-X string (pu_src, u_srcLen) to lower case.

3.1.4 Unicode Const Iterator (tuning/utfcit.h)

The UTF const iterator is a utility to iterate over constant UTF-8, UTF-16 and UTF-32 strings without
converting the data into a temporary UTF-32 buffer. The iterator converts the current (possibly
multiword) UTF character to UTF-32 and provides some position and length information. An UTF-8
character is of type t_UInt8, an UTF-16 character is of type t_UInt16, and an UTF-32 character is of type
t_UInt32. Length parameters refer to the number of characters, not to the size in bytes. The UTF string
may contain null characters. Modifying the string while iterating it is not allowed.

Template Declaration
template <class t_char>
 class gct_UtfCit
 {
 public:
 typedef t_char t_Char;

 inline gct_UtfCit ();
 inline gct_UtfCit (const t_Char * pu_src, t_UInt u_srcLen);

 void First (const t_Char * pu_src, t_UInt u_srcLen);
 bool Ready () const;
 void Next ();

 t_UInt32 GetChar () const;
 t_UInt GetCharPos () const;
 t_UInt GetRawPos () const;
 t_UInt GetRawLen () const;
 et_UtfError GetError () const;
 };

Methods
gct_UtfCit ();

Initializes an empty iterator.

Spirick Tuning Reference Manual Page 97

gct_UtfCit (const t_UIntX * pu_src, t_UInt u_srcLen);

Initializes the iterator and reads the first UTF character from the UTF-X string (pu_src, u_srcLen).

void First (const t_UIntX * pu_src, t_UInt u_srcLen);

Reads the first UTF character from the UTF-X string (pu_src, u_srcLen).

bool Ready () const;

Returns true if an UTF character was read successfully.

void Next ();

Reads the next UTF character from the source string.

t_UInt32 GetChar () const;

Returns the current UTF character in UTF-32 format.

t_UInt GetCharPos () const;

Returns the sequential number of the current UTF character.

t_UInt GetRawPos () const;

Returns the position of the current UTF character in t_UIntX format.

t_Uint GetRawLen () const;

Returns the length of the current UTF character in t_UIntX format.

et_UtfError GetError () const;

Returns the error code of the current UTF character.
ec_UtfOK: UTF character was read successfully.
ec_UtfEOS: End of string.
Other error: UTF format error. Iteration aborted.

Sample Code
The following sample code demonstrates a forward iteration over an UTF-X string.

gct_UtfCit <t_UIntX> co_cit;

for (co_cit. First (pu_src, u_srcLen);
 co_cit. Ready ();
 co_cit. Next ())
 {
 t_UInt32 u_char = co_cit. GetChar ();
 // ...
 }

if (co_cit. GetError () != ec_UtfEOS)
 {
 // error handling
 }

3.1.5 Precision Time (tuning/sys/ctimedate.hpp)

The system time (next section) is inaccurate in the microsecond range. The following function provides
a more precise measurement.

Spirick Tuning Reference Manual Page 98

Data Types
typedef t_Int64 t_MicroTime;

Data type for precision time values.

Functions
t_MicroTime tl_QueryPrecisionTime ();

Returns the time in microseconds since the first call of the function.

3.1.6 Time and Date (tuning/sys/ctimedate.hpp)

The following functions can be used for calendar and time calculations. Time values are expressed in
microseconds since 1/1/1970. The current time can be queried in UTC and local time.

Data Types, Constants
typedef t_Int64 t_MicroTime;

Time values are expressed in microseconds since 1/1/1970.

const t_MicroTime co_MicroSecondFactor = 1ll;
const t_MicroTime co_MilliSecondFactor = 1000ll;
const t_MicroTime co_SecondFactor = 1000000ll;
const t_MicroTime co_MinuteFactor = 60000000ll;
const t_MicroTime co_HourFactor = 3600000000ll;
const t_MicroTime co_DayFactor = 86400000000ll;

These constants are conversion factors from microseconds to milliseconds, seconds, minutes, hours and
days.

Functions
t_MicroTime tl_QueryUTCTime ();

Returns the current time, as reported by the system clock, in UTC.

t_MicroTime tl_QueryLocalTime ();

Returns the current time, as reported by the system clock, in the local time zone.

t_MicroTime tl_UTCToLocalTime (t_MicroTime i_time);

Converts UTC to local time.

t_MicroTime tl_LocalToUTCTime (t_MicroTime i_time);

Converts local time to UTC.

Appropriate Class
The class ct_TimeDate relies on the global functions of this section.

3.1.7 CPU Time (tuning/sys/ctimedate.hpp)

The following functions retrieve timing information for a process or thread.

Spirick Tuning Reference Manual Page 99

Structure Declaration
struct st_UserKernelTime
 {
 t_MicroTime o_UserTime;
 t_MicroTime o_KernelTime;
 };

This struct contains two microsecond values.
o_UserTime: Amount of time that the process/thread has executed in user mode.
o_KernelTime: Amount of time that the process/thread has executed in kernel mode.

Functions
bool tl_QueryProcessTimes (st_UserKernelTime * pso_times);

Retrieves timing information for the current process.

bool tl_QueryThreadTimes (st_UserKernelTime * pso_times);

Retrieves timing information for the current thread.

3.1.8 Thread Utilities (tuning/sys/cprocess.hpp)

The following functions can be used for multithreading.

Functions
t_Int32 tl_InterlockedRead (volatile t_Int32 * pi_value);

Returns a 32-bit value, loaded as an atomic operation.

t_Int32 tl_InterlockedWrite (volatile t_Int32 * pi_value, t_Int32 i_new);

Writes a 32-bit value as an atomic operation.

t_Int32 tl_InterlockedAdd (volatile t_Int32 * pi_value, t_Int32 i_add);

Performs an atomic addition operation on a 32-bit value and returns the result.

t_Int32 tl_InterlockedIncrement (volatile t_Int32 * pi_value);
t_Int32 tl_InterlockedDecrement (volatile t_Int32 * pi_value);

Increments/decrements a 32-bit value as an atomic operation and returns the result.

void tl_Delay (int i_milliSec);

Suspends the current thread for the specified number of milliseconds.

void tl_RelinquishTimeSlice ();

The current thread relinquishes the remainder of its time slice to any other thread.

ct_String tl_GetEnv (const char * pc_name);

Returns the value of the environment variable specified by the null-terminated string pc_name.

ct_String tl_GetTempPath ();

Returns the path for temporary files.

Spirick Tuning Reference Manual Page 100

3.1.9 Threads (tuning/sys/cthread.hpp)

The following functions can be used to create and terminate threads.

Data Types
typedef void (* ft_ThreadFunc) (void *);

Pointer to the thread function.

Functions
bool tl_BeginThread (ft_ThreadFunc fo_func, void * pv_param, t_UInt u_stackSize = 8u * 1024u);

Creates and starts a new thread and returns true on success. The parameter fo_func points to the thread
function. The parameter pv_param is passed to this function. Optionally the stack size of the new thread
can be specified. The thread is terminated by returning from the thread function or by calling
tl_EndThread.

void tl_EndThread ();

Terminates the current thread. The MS Windows implementation does not call destructors of local
objects.

t_UInt64 tl_ThreadId ();

Returns an OS dependent thread id.

3.1.10 Processes (tuning/sys/cprocess.hpp)

The following functions can be used to create and terminate processes.

Functions
int tl_Exec (const char * pc_path, unsigned u_params, const char * * ppc_params, bool b_wait = false);

Creates and starts a new process. The parameter pc_path specifies the path to the executable file.
Optionally u_params string parameters can be passed to the new process. The parameter ppc_params must
point to an array containing u_params pointers. A string parameter pointer must be equal to the null
pointer or it must point to a null-terminated string. Null pointers are replaced by pointers to an empty
string. A string parameter may contain whitespace, and it may begin and end with '"'.

On error the function returns -1. If the parameter b_wait equals false, the function returns an OS
dependent id of the new process. Otherwise the function waits for termination of the new process and
returns its exit code. See also the sample programs 'texec' and 'texechelper'.

void tl_EndProcess (unsigned u_exitCode);

Terminates the current process without calling destructors. The parameter u_exitCode is passed to the
operating system.

int tl_ProcessId ();

Returns an OS dependent process id.

bool tl_IsProcessRunning (int i_processId);

Returns true if the process specified by i_processId was started successfully and is still running.

Spirick Tuning Reference Manual Page 101

3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp)

A thread mutex is an object to synchronize multiple threads of a process.

Class Declaration
class ct_ThMutex
 {
public:
 bool GetInitSuccess () const;
 et_ResError TryLock (bool & b_success);
 et_ResError Lock ();
 et_ResError Unlock ();
 };

The class ct_ThMutex can be used to protect access to a shared resource (mutual exclusion). If a thread
locks a mutex, the same thread must unlock the mutex. The implementation is recursive, i.e. a thread
may lock an already locked mutex. Mutex objects must not be copied by a copy constructor, an
assignment operator, memcpy or memmove.

Methods
bool GetInitSuccess ();

Returns true if the mutex object was initialized successfully.

et_ResError TryLock (bool & b_success);

Tries to lock the mutex and stores true or false in b_success. The method returns immediately without
blocking the thread.

et_ResError Lock ();

Locks the mutex and returns immediately on success. If another thread has locked the mutex the
current thread will be blocked until the mutex is unlocked.

et_ResError Unlock ();

Unlocks the mutex.

Functions
The following functions use a predefined global mutex object.

bool tl_CriticalSectionInitSuccess ();

Returns true if the global mutex object was initialized successfully.

void tl_DeleteCriticalSection ();

Deletes the global mutex object. This function may be called optionally at the end of the program.

et_ResError tl_TryEnterCriticalSection (bool & b_success);

Tries to lock the global mutex object and stores true or false in b_success. The method returns
immediately without blocking the thread.

et_ResError tl_EnterCriticalSection ();

Locks the global mutex object and returns immediately on success. If another thread has locked the
mutex the current thread will be blocked until the mutex is unlocked.

Spirick Tuning Reference Manual Page 102

et_ResError tl_LeaveCriticalSection ();

Unlocks the global mutex object.

3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)

A thread semaphore is an object to synchronize multiple threads of a process.

Class Declaration
class ct_ThSemaphore
 {
public:
 ct_ThSemaphore (t_Int32 i_initValue = 1);
 ~ct_ThSemaphore ();

 bool GetInitSuccess () const;
 et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Acquire ();
 et_ResError Release ();
 };

The class ct_ThSemaphore implements a counting semaphore. A semaphore can be acquired and released
by multiple threads in arbitrary order. The method Acquire decrements the internal counter, Release
increments the counter. If the counter becomes zero, the current thread will be blocked until another
thread releases the semaphore.

If the counter initially equals 1, a counting semaphore can be used like a mutex. In this case the method
Acquire works like Lock, and Release works like Unlock. If the counter initially equals zero, a counting
semaphore can be used to implement a message queue (see sample program 'tsemaphore'). Semaphore
objects must not be copied by a copy constructor, an assignment operator, memcpy or memmove.

Methods
ct_ThSemaphore (t_Int32 i_initValue = 1);

Initializes the object and sets the internal counter to i_initValue.

bool GetInitSuccess ();

Returns true if the semaphore object was initialized successfully.

et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);

Tries to acquire the semaphore and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

et_ResError Acquire ();

Acquires the semaphore (i.e. decrement the counter) and returns immediately on success. If the counter
becomes zero, the current thread will be blocked until another thread releases the semaphore.

et_ResError Release ();

Releases the semaphore (i.e. increments the counter).

Spirick Tuning Reference Manual Page 103

3.1.13 Shared Resource (tuning/sys/csharedres.hpp)

The class ct_SharedResource is the base class for objects which can be shared by multiple processes. A
shared resource is identified by a key (an 8-bit character string).

Before using a shared resource, a key must be assigned and the object must be initialized by calling Open
or Create of a derived class. Once a shared resource has been initialized, the key must not be changed.

Class Declaration
class ct_SharedResource
 {
public:
 ct_SharedResource ();
 ct_SharedResource (const char * pc_key);
 ct_SharedResource (const char * pc_key, unsigned u_idx);
 virtual ~ct_SharedResource ();

 bool GetInitSuccess () const;
 const char * GetKey () const;
 et_ResError SetKey (const char * pc_key);
 et_ResError SetKey (const char * pc_key, unsigned u_idx);
 };

Methods
ct_SharedResource ();

Constructs a shared resource without a key.

ct_SharedResource (const char * pc_key);

Constructs a shared resource identified by pc_key.

ct_SharedResource (const char * pc_key, unsigned u_idx);

Constructs a shared resource identified by pc_key and u_idx. The value of u_idx is converted to a string
and appended to pc_key.

virtual ~ct_SharedResource ();

The virtual destructor ensures type-safe destruction of derived classes.

bool GetInitSuccess ();

Returns true if the shared resource was initialized successfully.

const char * GetKey () const;

Returns the key.

et_ResError SetKey (const char * pc_key);

Sets the key to pc_key.

et_ResError SetKey (const char * pc_key, unsigned u_idx);

Sets the key to pc_key. The value of u_idx is converted to a string and appended to pc_key.

3.1.14 Process Mutex (tuning/sys/cprmutex.hpp)

A process mutex is an object to synchronize multiple processes.

Spirick Tuning Reference Manual Page 104

Base Class
ct_SharedResource (see above 'Shared Resource')

Class Declaration
class ct_PrMutex: public ct_SharedResource
 {
public:
 ct_PrMutex ();
 ct_PrMutex (const char * pc_key);
 ct_PrMutex (const char * pc_key, unsigned u_idx);
 ~ct_PrMutex ();

 et_ResError Open ();
 et_ResError Create (bool b_createNew = false);
 et_ResError Close ();

 et_ResError TryLock (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Lock ();
 et_ResError Unlock ();
 };

The class ct_PrMutex can be used to protect access to a shared resource (mutual exclusion). A process
mutex is fully initialized if the key has been set and Open or Create has returned ec_ResOK. If a process
locks a mutex, the same process must unlock the mutex. The MS Windows implementation is recursive,
i.e. a process may lock an already locked mutex. The Linux implementation is not recursive. The
methods TryLock, Lock and Unlock are thread-safe. Mutex objects must not be copied by a copy
constructor or an assignment operator.

Methods
ct_PrMutex ();

Constructs a process mutex using a predefined key.

ct_PrMutex (const char * pc_key);

Constructs a process mutex identified by pc_key.

ct_PrMutex (const char * pc_key, unsigned u_idx);

Constructs a process mutex identified by pc_key and u_idx. The value of u_idx is converted to a string
and appended to pc_key.

~ct_PrMutex ();

The destructor closes the mutex.

et_ResError Open ();

Opens an existing process mutex.

et_ResError Create (bool b_createNew = false);

Creates a new process mutex. Returns ec_ResAlreadyExists if b_createNew equals true and a process mutex
with the same key already exists.

et_ResError Close ();

Closes an open process mutex.

et_ResError TryLock (bool & b_success, t_UInt32 u_milliSec = 0);

Tries to lock the process mutex and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

Spirick Tuning Reference Manual Page 105

et_ResError Lock ();

Locks the process mutex and returns immediately on success. If another process has locked the mutex
the current thread will be blocked until the mutex is unlocked.

et_ResError Unlock ();

Unlocks the process mutex.

Functions
The following functions use a predefined global mutex object.

bool tl_CriticalPrSectionInitSuccess ();

Returns true if the global mutex object was initialized successfully.

void tl_DeleteCriticalPrSection ();

Deletes the global mutex object. This function may be called optionally at the end of the program.

et_ResError tl_TryEnterCriticalPrSection (bool & b_success, t_UInt32 u_milliSec = 0);

Tries to lock the global mutex object and stores true or false in b_success. The method will wait for at
most u_milliSec milliseconds.

et_ResError tl_EnterCriticalPrSection ();

Locks the global mutex object and returns immediately on success. If another process has locked the
mutex the current thread will be blocked until the mutex is unlocked.

et_ResError tl_LeaveCriticalPrSection ();

Unlocks the global mutex object.

3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)

A process semaphore is an object to synchronize multiple processes.

Base Class
ct_SharedResource (see above 'Shared Resource')

Class Declaration
class ct_PrSemaphore: public ct_SharedResource
 {
public:
 ct_PrSemaphore ();
 ct_PrSemaphore (const char * pc_key);
 ct_PrSemaphore (const char * pc_key, unsigned u_idx);
 ~ct_PrSemaphore ();

 et_ResError Open ();
 et_ResError Create (t_Int32 i_initValue = 1, bool b_createNew = false);
 et_ResError Close ();

 et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Acquire ();
 et_ResError Release ();
 };

Spirick Tuning Reference Manual Page 106

The class ct_PrSemaphore implements a counting semaphore. A process semaphore is fully initialized if the
key has been set and Open or Create has returned ec_ResOK. A semaphore can be acquired and released by
multiple processes in arbitrary order. The method Acquire decrements the internal counter, Release
increments the counter. If the counter becomes zero, the current thread will be blocked until another
process releases the semaphore.

If the counter initially equals 1, a counting semaphore can be used like a mutex. In this case the method
Acquire works like Lock, and Release works like Unlock. If the counter initially equals zero, a counting
semaphore can be used to implement a message queue (see sample program 'tsemaphore'). The
methods TryAcquire, Acquire and Release are thread-safe. Semaphore objects must not be copied by a
copy constructor or an assignment operator.

Methods
ct_PrSemaphore ();

Constructs a process semaphore using a predefined key.

ct_PrSemaphore (const char * pc_key);

Constructs a process semaphore identified by pc_key.

ct_PrSemaphore (const char * pc_key, unsigned u_idx);

Constructs a process semaphore identified by pc_key and u_idx. The value of u_idx is converted to a
string and appended to pc_key.

~ct_PrSemaphore ();

The destructor closes the semaphore.

et_ResError Open ();

Opens an existing process semaphore.

et_ResError Create (t_Int32 i_initValue = 1, bool b_createNew = false);

Creates a new process semaphore and sets the internal counter to i_initValue. Returns
ec_ResAlreadyExists if b_createNew equals true and a process semaphore with the same key already exists.

et_ResError Close ();

Closes an open process semaphore.

et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);

Tries to acquire the semaphore and stores true or false in b_success. The method will wait for at most
u_milliSec milliseconds.

et_ResError Acquire ();

Acquires the semaphore (i.e. decrement the counter) and returns immediately on success. If the counter
becomes zero, the current thread will be blocked until another process releases the semaphore.

et_ResError Release ();

Releases the semaphore (i.e. increments the counter).

3.1.16 Shared Memory (tuning/sys/csharedmem.hpp)

The class ct_SharedMemory provides access to a shared memory block by multiple processes. A shared
memory object is fully initialized if the key has been set and Open or Create has returned ec_ResOK.

Spirick Tuning Reference Manual Page 107

Base Class
ct_SharedResource (see above 'Shared Resource')

Class Declaration
class ct_SharedMemory: public ct_SharedResource
 {
public:
 ct_SharedMemory ();
 ct_SharedMemory (const char * pc_key);
 ct_SharedMemory (const char * pc_key, unsigned u_idx);
 ~ct_SharedMemory ();

 et_ResError Open (bool b_readOnly);
 et_ResError Create (t_UInt u_size, bool b_createNew = false);
 et_ResError Close ();

 t_UInt GetSize () const;
 void * GetData () const;
 };

Methods
ct_SharedMemory ();

Constructs a shared memory object using a predefined key.

ct_SharedMemory (const char * pc_key);

Constructs a shared memory object identified by pc_key.

ct_SharedMemory (const char * pc_key, unsigned u_idx);

Constructs a shared memory object identified by pc_key and u_idx. The value of u_idx is converted to a
string and appended to pc_key.

~ct_SharedMemory ();

The destructor closes the shared memory object.

et_ResError Open (bool b_readOnly);

Opens an existing shared memory object. The parameter b_readOnly determines the access mode.

et_ResError Create (t_UInt u_size, bool b_createNew = false);

Creates a new shared memory block of u_size bytes. Returns ec_ResAlreadyExists if b_createNew equals
true and a shared memory object with the same key already exists.

et_ResError Close ();

Closes an open shared memory object.

t_UInt GetSize () const;

Returns the size of the shared memory block.

void * GetData () const;

Returns a pointer to the contents of the shared memory block.

Spirick Tuning Reference Manual Page 108

3.1.17 File I/O (tuning/sys/cfile.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The following functions are based on operating system related functions. In most cases, the OS API
functions perform better than the compiler’s runtime system (fopen etc.). The functions tl_OpenFile and
tl_CreateFile are protected against race conditions. All functions return true on success and false on
failure, no exceptions are thrown.

Data Types, Constants
typedef ... t_FileId;
const t_FileId co_InvalidFileId = ...;
typedef t_Int64 t_FileSize;

A file id is an OS dependent identification number that references an open file. The constant
co_InvalidFileId is invalid by definition. t_FileSize is used for size and position values.

Functions
bool tl_OpenFile (const char * pc_name, t_FileId & o_file, bool b_readOnly = true, bool b_sequential = true);

Opens the existing file pc_name. The parameter b_readOnly determines the access mode. The parameter
b_sequential is a hint to optimize file caching (sequential or random access). Set o_file to
co_InvalidFileId before calling the function. Returns true on success and stores the file id in o_file.

bool tl_CreateFile (const char * pc_name, t_FileId & o_file, bool b_createNew = false);

Creates the new file pc_name and opens it for read/write access. Returns false if b_createNew equals true
and the specified file already exists. Otherwise the function overwrites the existing file. Set o_file to
co_InvalidFileId before calling the function. Returns true on success and stores the file id in o_file.

bool tl_CloseFile (t_FileId o_file);

Closes the file o_file.

bool tl_ExistsFile (const char * pc_name);

Returns true if the file pc_name exists.

bool tl_MoveFile (const char * pc_old, const char * pc_new);

Moves (renames) a file either in the same directory or across directories.

bool tl_CopyFile (const char * pc_old, const char * pc_new, bool b_overwrite = true);

Copies an existing file to a new file. Returns false if b_overwrite equals false and the specified file
already exists.

bool tl_DeleteFile (const char * pc_name);

Deletes an existing file.

bool tl_QuerySize (t_FileId o_file, t_FileSize & o_size);

Retrieves the size of the specified file and stores the result in o_size.

bool tl_QueryPos (t_FileId o_file, t_FileSize & o_pos);

Retrieves the file pointer of the specified file and stores the result in o_pos.

Spirick Tuning Reference Manual Page 109

bool tl_SeekAbs (t_FileId o_file, t_FileSize o_pos);

Moves the file pointer of the specified file to the absolute position o_pos (an offset from the beginning of
the file).

bool tl_SeekRel (t_FileId o_file, t_FileSize o_pos);

Moves the file pointer of the specified file to the relative position o_pos (relative to the current position).

bool tl_Truncate (t_FileId o_file, t_FileSize o_size);

Sets the size for the specified file to o_size.

bool tl_Read (t_FileId o_file, void * pv_dst, t_FileSize o_len);

Reads o_len bytes from the specified file to the buffer pv_dst and moves the file pointer.

bool tl_Write (t_FileId o_file, const void * pv_src, t_FileSize o_len);

Writes o_len bytes from the buffer pv_src to the specified file and moves the file pointer.

Appropriate Class
The class ct_File relies on the global functions of this section.

3.1.18 Directory (tuning/sys/cdir.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The following functions can be used to create, move and delete directories. All functions return true on
success and false on failure, no exceptions are thrown.

Functions
bool tl_QueryCurrentDirectory (const char * pc_drive, t_UInt u_driveLen, ct_String & co_currentDirectory);

Retrieves the current directory and stores the result in co_currentDirectory. MS Windows only: Retrieves
the current directory of the drive (pc_drive, u_driveLen). If u_driveLen equals zero the current drive is used.

bool tl_CreateDirectory (const char * pc_name);

Creates the new directory pc_name.

bool tl_MoveDirectory (const char * pc_old, const char * pc_new);

Moves (renames) a directory either in the same directory or across directories.

bool tl_DeleteDirectory (const char * pc_name);

Deletes the existing directory pc_name.

Appropriate Class
The class ct_Directory relies on the global functions of this section.

3.1.19 System-Related Information (tuning/sys/cinfo.hpp)

The following functions retrieve several system-related information. Strings are static allocated.

Spirick Tuning Reference Manual Page 110

Structure Declaration
struct st_FileSystemInfo
 {
 t_UInt64 u_TotalBytes;
 t_UInt64 u_FreeBytes;
 t_UInt64 u_AvailableBytes;
 };

The struct st_FileSystemInfo provides information about a mounted filesystem (a disk volume).
u_TotalBytes: The total number of bytes on a filesystem.
u_FreeBytes: The total number of free bytes on a filesystem.
u_AvailableBytes: The total number of free bytes on a filesystem that are available to the curr. user.

Structure Declaration
struct st_HardwareInfo
 {
 t_UInt64 u_TotalBytes;
 t_UInt64 u_AvailableBytes;
 unsigned u_TotalProcessors;
 unsigned u_AvailableProcessors;
 const char * pc_CPUName;
 };

The struct st_HardwareInfo provides information about hardware components.
u_TotalBytes: The amount of physical memory.
u_AvailableBytes: The amount of physical memory currently available.
u_TotalProcessors: The number of logical processors (CPU cores).
u_AvailableProcessors: The number of logical processors (CPU cores) currently available.
pc_CPUName: The name of the CPU.

Note that if a 32-bit process is running in a 64-bit environment, the reported memory size may be
greater than 4 GB.

Structure Declaration
struct st_ProcessMemoryInfo
 {
 t_UInt u_VMBytes;
 t_UInt u_RSSBytes;
 };

The struct st_ProcessMemoryInfo provides information about the memory usage of the current process.
u_VMBytes: The virtual memory size (memory that is committed for the process).
u_RSSBytes: The resident set size (memory that is currently resident in physical memory).

Note that the calculation of these values is OS dependent, e.g. the inclusion of shared memory.

Structure Declaration
enum et_Compiler
 {
 ec_CompilerMSVC,
 ec_CompilerGCC
 };

struct st_CompilerInfo
 {
 et_Compiler eo_Compiler;

Spirick Tuning Reference Manual Page 111

 const char * pc_CompilerVersion;
 const char * pc_RuntimeVersion;
 };

The struct st_CompilerInfo provides information about the compiler and the runtime system.
eo_Compiler: The compiler type.
pc_CompilerVersion: The compiler version.
pc_RuntimeVersion: The runtime version.

Structure Declaration
enum et_System
 {
 ec_SystemMSWindows,
 ec_SystemLinux
 };

struct st_SystemInfo
 {
 et_System eo_System;
 const char * pc_SystemVersion;
 const char * pc_ComputerName;
 const char * pc_UserName;
 };

The struct st_SystemInfo provides information about the operating system.
eo_System: The operating system type.
pc_SystemVersion: The operating system version.
pc_ComputerName: The name of the computer.
pc_UserName: The name of the current user.

Structure Declaration
struct st_BatteryInfo
 {
 bool b_ACLine;
 bool b_BatteryFound;
 int i_LifePercent;
 };

The struct st_BatteryInfo provides information about the power supply.
b_ACLine: Is the system running on line power?
b_BatteryFound: Does the system contain a battery?
i_LifePercent: The percentage of full battery charge remaining.

Functions
bool tl_QueryFileSystemInfo (const char * pc_path, st_FileSystemInfo * pso_info);

Retrieves information about the specified filesystem and stores the result in pso_info.

bool tl_QueryHardwareInfo (st_HardwareInfo * pso_info);

Retrieves information about hardware components and stores the result in pso_info.

bool tl_QueryProcessMemoryInfo (st_ProcessMemoryInfo * pso_info);

Retrieves information about the memory usage and stores the result in pso_info.

bool tl_QueryCompilerInfo (st_CompilerInfo * pso_info);

Retrieves information about the compiler and stores the result in pso_info.

Spirick Tuning Reference Manual Page 112

bool tl_QuerySystemInfo (st_SystemInfo * pso_info);

Retrieves information about the operating system and stores the result in pso_info.

bool tl_QueryBatteryInfo (st_BatteryInfo * pso_info);

Retrieves information about the power supply and stores the result in pso_info.

3.2 Strings and Filenames

3.2.1 String Template (tuning/string.h)

The Spirick string classes manage null-terminated strings and contain additionally a length attribute. The
terminating null character ensures compatibility with many other API’s. The redundant length attribute
speeds up string operations. Position values are zero-based. The string length does not count the
terminating null character. Length values refer to the number of characters, not to the size in bytes.

The class template gct_String is the base class of all other string classes. The first template parameter
t_block must at least contain the character block interface, e.g. gct_CharBlock <ct_Chn32Block, char>. To
reduce the memory consumption of empty strings, it is recommended to use the template
gct_NullDataBlock, e.g. gct_CharBlock <gct_NullDataBlock <ct_Chn32Block, char>, char>. The second template
parameter t_staticStore must be a store class with static methods, e.g. ct_Chn32Store. It is used for
temporary data inside of the method ReplaceAll.

Base Class
gct_CharBlock (see above 'Character Block')

Template Declaration
template <class t_block, class t_staticStore>
 class gct_String: public t_block
 {
 public:
 typedef t_block t_Block;
 typedef t_staticStore t_StaticStore;
 typedef t_block::t_Char t_Char;
 typedef t_block::t_Size t_Size;

 inline gct_String ();
 inline gct_String (t_Char c_init);
 inline gct_String (t_Char c_init, t_Size o_len);
 inline gct_String (const t_Char * pc_init);
 inline gct_String (const t_Char * pc_init, t_Size o_len);
 inline gct_String (const gct_String & co_init);

 inline t_UInt GetHash () const;
 inline bool IsEmpty () const;
 inline t_Size GetMaxLen () const;
 inline t_Size GetLen () const;
 inline const t_Char * GetStr () const;
 inline const t_Char * operator () () const;
 inline const t_Char * GetStr (t_Size o_pos) const;
 inline const t_Char * operator () (t_Size o_pos) const;
 inline t_Char & GetChar (t_Size o_pos) const;
 inline t_Char & operator [] (t_Size o_pos) const;
 inline t_Char & GetRevChar (t_Size o_pos) const;
 gct_String SubStr (t_Size o_len) const;
 gct_String RevSubStr (t_Size o_len) const;

Spirick Tuning Reference Manual Page 113

 gct_String SubStr (t_Size o_pos, t_Size o_len) const;
 gct_String operator () (t_Size o_pos, t_Size o_len) const;

 t_Int First (t_Char c_search, t_Size o_pos = 0) const;
 t_Int First (const t_Char * pc_search, t_Size o_pos = 0) const;
 t_Int First (const gct_String & co_search, t_Size o_pos = 0) const;

 t_Int Last (t_Char c_search, t_Size o_pos = 0) const;
 t_Int Last (const t_Char * pc_search, t_Size o_pos = 0) const;
 t_Int Last (const gct_String & co_search, t_Size o_pos = 0) const;

 inline int CompSubStr (t_Size o_pos, t_Char c_comp) const;
 inline int CompSubStr (t_Size o_pos, const t_Char * pc_comp) const;
 inline int CompSubStr (t_Size o_pos, const t_Char * pc_comp, t_Size o_len) const;
 inline int CompSubStr (t_Size o_pos, const gct_String & co_comp) const;

 inline int CompTo (t_Char c_comp) const;
 inline int CompTo (const t_Char * pc_comp) const;
 inline int CompTo (const t_Char * pc_comp, t_Size o_len) const;
 inline int CompTo (const gct_String & co_comp) const;

 inline void Clear ();
 inline void Assign (t_Char c_asgn);
 inline void Assign (t_Char c_asgn, t_Size o_len);
 void Assign (const t_Char * pc_asgn);
 inline void Assign (const t_Char * pc_asgn, t_Size o_len);
 void Assign (const gct_String & co_asgn);
 inline void Append (t_Char c_app);
 inline void Append (t_Char c_app, t_Size o_len);
 void Append (const t_Char * pc_app);
 inline void Append (const t_Char * pc_app, t_Size o_len);
 void Append (const gct_String & co_app);

 inline void Insert (t_Size o_pos, t_Char c_ins);
 inline void Insert (t_Size o_pos, t_Char c_ins, t_Size o_len);
 inline void Insert (t_Size o_pos, const t_Char * pc_ins);
 inline void Insert (t_Size o_pos, const t_Char * pc_ins, t_Size o_len);
 inline void Insert (t_Size o_pos, const gct_String & co_ins);
 inline void Delete (t_Size o_pos);
 inline void Delete (t_Size o_pos, t_Size o_len);
 inline void DeleteRev (t_Size o_len);
 void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins);
 void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins, t_Size o_insLen);
 void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins);
 void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins, t_Size o_insLen);
 void Replace (t_Size o_pos, t_Size o_delLen, const gct_String & co_ins);
 t_Size ReplaceAll (const gct_String & co_search, const gct_String & co_replace);

 int AssignF (const t_Char * pc_format, ...);
 int AppendF (const t_Char * pc_format, ...);
 int InsertF (t_Size o_pos, const t_Char * pc_format, ...);
 int ReplaceF (t_Size o_pos, t_Size o_delLen, const t_Char * pc_format, ...);

 inline bool ToUpper ();
 inline bool ToLower ();
 inline bool ToUpper2 ();
 inline bool ToLower2 ();

 inline bool operator == (const t_Char * pc_comp) const;
 inline bool operator == (const gct_String & co_comp) const;
 inline bool operator != (const t_Char * pc_comp) const;
 inline bool operator != (const gct_String & co_comp) const;
 inline bool operator < (const t_Char * pc_comp) const;
 inline bool operator < (const gct_String & co_comp) const;
 inline bool operator <= (const t_Char * pc_comp) const;
 inline bool operator <= (const gct_String & co_comp) const;

Spirick Tuning Reference Manual Page 114

 inline bool operator > (const t_Char * pc_comp) const;
 inline bool operator > (const gct_String & co_comp) const;
 inline bool operator >= (const t_Char * pc_comp) const;
 inline bool operator >= (const gct_String & co_comp) const;

 inline gct_String & operator = (t_Char c_asgn);
 inline gct_String & operator = (const t_Char * pc_asgn);
 inline gct_String & operator = (const gct_String & co_asgn);
 inline gct_String & operator += (t_Char c_app);
 inline gct_String & operator += (const t_Char * pc_app);
 inline gct_String & operator += (const gct_String & co_app);

 inline gct_String operator + (t_Char c_app) const;
 inline gct_String operator + (const t_Char * pc_app) const;
 inline gct_String operator + (const gct_String & co_app) const;

 friend inline gct_String operator + (t_Char c_init, const gct_String & co_app);
 friend inline gct_String operator + (const t_Char * pc_init, const gct_String & co_app);
 template <class t_string>
 void Convert (const t_string & co_asgn);
 template <class t_string>
 bool MbConvert (const t_string & co_asgn);
 template <class t_asgnChar>
 bool MbConvert (const t_asgnChar * po_asgn);
 };

Kinds of String Parameters
1. Single character (t_Char c): The character is interpreted as a string of length 1.
2. Multiple characters (t_Char c, t_Size o_len): The parameter list is interpreted as a string of length

o_len filled with the character c.
3. Null-terminated string (const t_Char * pc): The string is processed up to the null character.
4. String with length information (const t_Char * pc, t_Size o_len): The first o_len characters of the string

are processed. The string must not contain null characters.
5. String object (const gct_String & co): The complete string co is processed.
6. Formatted string (const t_Char * pc_format, ...): The parameter list is interpreted like a printf

parameter list. This kind of string parameters can’t be used by overloaded methods.

Self-Assignment
Some frequently used string methods check for self-assignment. In some cases, a check for self-
assignment is very expensive, e.g. while processing substrings. Please refer to the description of the
respective methods.

Data Types
typedef t_block::t_Size t_Size;

The nested type t_Size is used for position and length values.

Constructors
gct_String ();

Initializes an empty string object.

gct_String (t_Char c_init);

Initializes a string object of length 1 containing the character c_init.

gct_String (t_Char c_init, t_Size o_len);

Initializes a string object of length o_len containing o_len characters c_init.

Spirick Tuning Reference Manual Page 115

gct_String (const t_Char * pc_init);

Initializes a string object containing a copy of the null-terminated string pc_init.

gct_String (const t_Char * pc_init, t_Size o_len);

Initializes a string object of length o_len containing a copy of the first o_len characters of pc_init.

gct_String (const gct_String & co_init);

Initializes a string object containing a copy of the string object co_init.

Access to Length and Contents
t_UInt GetHash () const;

Calculates the string’s hash value.

bool IsEmpty () const;

Returns true if the string is empty.

t_Size GetMaxLen () const;

Returns the maximum length (without the terminating null character).

t_Size GetLen () const;

Returns the current length (without the terminating null character).

const t_Char * GetStr () const;
const t_Char * operator () () const;

Returns a pointer to the first character. If the string is empty, the methods return a pointer to the
terminating null character.

const t_Char * GetStr (t_Size o_pos) const;
const t_Char * operator () (t_Size o_pos) const;

Returns a pointer to the character at position o_pos (o_pos <= GetLen ()). If o_pos equals GetLen (), the
methods return a pointer to the terminating null character.

t_Char & GetChar (t_Size o_pos) const;
t_Char & operator [] (t_Size o_pos) const;

Returns a reference to the character at position o_pos (o_pos < GetLen ()).

t_Char & GetRevChar (t_Size o_pos) const;

Returns a reference to the character at position GetLen () - 1 - o_pos (o_pos < GetLen ()). If o_pos equals
zero, the method returns a reference to the last character.

gct_String SubStr (t_Size o_len) const;

Returns a string object containing a copy of the first o_len characters (o_len <= GetLen ()).

gct_String RevSubStr (t_Size o_len) const;

Returns a string object containing a copy of the last o_len characters (o_len <= GetLen ()).

gct_String SubStr (t_Size o_pos, t_Size o_len) const;
gct_String operator () (t_Size o_pos, t_Size o_len) const;

Returns a string object containing a copy of the o_len characters beginning at position o_pos (o_pos +
o_len <= GetLen ()).

Spirick Tuning Reference Manual Page 116

Search for Characters and Strings
t_Int First (t_Char c_search, t_Size o_pos = 0) const;

If successful, it returns the position of the first occurrence of c_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int First (const t_Char * pc_search, t_Size o_pos = 0) const;

If successful, it returns the position of the first occurrence of pc_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int First (const gct_String & co_search, t_Size o_pos = 0) const;

If successful, it returns the position of the first occurrence of co_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int Last (t_Char c_search, t_Size o_pos = 0) const;

If successful, it returns the position of the last occurrence of c_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int Last (const t_Char * pc_search, t_Size o_pos = 0) const;

If successful, it returns the position of the last occurrence of pc_search starting at position o_pos.
Otherwise it returns a negative value.

t_Int Last (const gct_String & co_search, t_Size o_pos = 0) const;

If successful, it returns the position of the last occurrence of co_search starting at position o_pos.
Otherwise it returns a negative value.

Compare Substrings
The return value of the following methods is less than zero if this < param, equal to zero if this == param,
and greater than zero if this > param. The characters are compared as unsigned values.

The following methods compare a substring beginning at position o_pos to the string specified by the
arguments. In contrast to the full string comparison (see below), a substring comparison ends at the end
of the shorter string.

int CompSubStr (t_Size o_pos, t_Char c_comp) const;

Compares the substring beginning at position o_pos to the character c_comp.

int CompSubStr (t_Size o_pos, const t_Char * pc_comp) const;

Compares the substring beginning at position o_pos to the null-terminated string pc_comp.

int CompSubStr (t_Size o_pos, const t_Char * pc_comp, t_Size o_len) const;

Compares the substring beginning at position o_pos to the first o_len characters of the string pc_comp.

int CompSubStr (t_Size o_pos, const gct_String & co_comp) const;

Compares the substring beginning at position o_pos to the string object co_comp.

Compare Strings
The return value of the following methods is less than zero if this < param, equal to zero if this == param,
and greater than zero if this > param. The characters are compared as unsigned values.

The following methods compare this string to the string specified by the arguments. If the strings are
equal when compared up to the shortest length, the longer string is considered greater than the shorter
one.

Spirick Tuning Reference Manual Page 117

int CompTo (t_Char c_comp) const;

Compares this string to the character c_comp.

int CompTo (const t_Char * pc_comp) const;

Compares this string to the null-terminated string pc_comp.

int CompTo (const t_Char * pc_comp, t_Size o_len) const;

Compares this string to the first o_len characters of the string pc_comp.

int CompTo (const gct_String & co_comp) const;

Compares this string to the string object co_comp.

Assignment
void Clear ();

Clears the string.

void Assign (t_Char c_asgn);

Replaces the contents with the character c_asgn.

void Assign (t_Char c_asgn, t_Size o_len);

Replaces the contents with o_len characters c_asgn.

void Assign (const t_Char * pc_asgn);

Replaces the contents with a copy of the null-terminated string pc_asgn (check for self-assignment).

void Assign (const t_Char * pc_asgn, t_Size o_len);

Replaces the contents with a copy of the first o_len characters of the string pc_asgn (no check for self-
assignment).

void Assign (const gct_String & co_asgn);

Replaces the contents with a copy of the string object co_asgn (check for self-assignment).

Append
void Append (t_Char c_app);

Appends the character c_app.

void Append (t_Char c_app, t_Size o_len);

Appends o_len characters c_app.

void Append (const t_Char * pc_app);

Appends a copy of the null-terminated string pc_app (check for self-assignment).

void Append (const t_Char * pc_app, t_Size o_len);

Appends a copy of the first o_len characters of the string pc_app (no check for self-assignment).

void Append (const gct_String & co_app);

Appends a copy of the string object co_app (check for self-assignment).

Spirick Tuning Reference Manual Page 118

Insert
void Insert (t_Size o_pos, t_Char c_ins);

Inserts the character c_ins at the position o_pos (o_pos <= GetLen ()).

void Insert (t_Size o_pos, t_Char c_ins, t_Size o_len);

Inserts o_len characters c_ins at the position o_pos (o_pos <= GetLen ()).

void Insert (t_Size o_pos, const t_Char * pc_ins);

Inserts a copy of the null-terminated string pc_ins at the position o_pos (o_pos <= GetLen ()).

void Insert (t_Size o_pos, const t_Char * pc_ins, t_Size o_len);

Inserts a copy of the first o_len characters of the string pc_ins at the position o_pos (o_pos <= GetLen ()).

void Insert (t_Size o_pos, const gct_String & co_ins);

Inserts a copy of the string object co_ins at the position o_pos (o_pos <= GetLen ()).

Delete
void Delete (t_Size o_pos);

Deletes the characters from the position o_pos to the end of the string (o_pos <= GetLen ()).

void Delete (t_Size o_pos, t_Size o_len);

Deletes o_len characters starting at the position o_pos (o_pos + o_len <= GetLen ()).

void DeleteRev (t_Size o_len);

Deletes the last o_len characters (o_len <= GetLen ()).

Replace
void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins);

Replaces o_delLen characters starting at position o_pos with the character c_ins (o_pos + o_delLen <= GetLen
()).

void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins, t_Size o_insLen);

Replaces o_delLen characters starting at position o_pos with o_insLen characters c_ins (o_pos + o_delLen <=
GetLen ()).

void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins);

Replaces o_delLen characters starting at position o_pos with a copy of the null-terminated string pc_ins
(o_pos + o_delLen <= GetLen ()).

void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins, t_Size o_insLen);

Replaces o_delLen characters starting at position o_pos with a copy of the first o_insLen characters of the
string pc_ins (o_pos + o_delLen <= GetLen ()).

void Replace (t_Size o_pos, t_Size o_delLen, const gct_String & co_ins);

Replaces o_delLen characters starting at position o_pos with a copy of the string object co_ins (o_pos +
o_delLen <= GetLen ()).

Spirick Tuning Reference Manual Page 119

Replace All
t_Size ReplaceAll (const gct_String & co_search, const gct_String & co_replace);

Replaces all occurrences of co_search with a copy of co_replace and returns the number of replacements
done. The implementation is optimized for minimal reallocations.

Formatted String Parameters
The following methods work like Assign, Append, Insert and Replace, but the parameter list is interpreted
like a printf parameter list. All methods return the length of the resulting string parameter. On failure, a
negative number is returned (see below 'Formatted Strings').

int AssignF (const t_Char * pc_format, ...);

Replaces the contents with the formatted string parameter.

int AppendF (const t_Char * pc_format, ...);

Appends the formatted string parameter.

int InsertF (t_Size o_pos, const t_Char * pc_format, ...);

Inserts the formatted string parameter at the position o_pos (o_pos <= GetLen ()).

int ReplaceF (t_Size o_pos, t_Size o_delLen, const t_Char * pc_format, ...);

Replaces o_delLen characters starting at position o_pos with the formatted string parameter (o_pos +
o_delLen <= GetLen ()).

Upper/Lower Case
The following methods use global system interface functions (see above 'Character and String
Conversion').

bool ToUpper ();

Converts the string to upper case (Windows-1252).

bool ToLower ();

Converts the string to lower case (Windows-1252).

bool ToUpper2 ();

Converts the string to upper case (partially UTF compatible).

bool ToLower2 ();

Converts the string to lower case (partially UTF compatible).

Comparison Operators
The following comparison functions are based on the method CompTo (see above).

Spirick Tuning Reference Manual Page 120

bool operator == (const t_Char * pc_comp) const;
bool operator == (const gct_String & co_comp) const;
bool operator != (const t_Char * pc_comp) const;
bool operator != (const gct_String & co_comp) const;
bool operator < (const t_Char * pc_comp) const;
bool operator < (const gct_String & co_comp) const;
bool operator <= (const t_Char * pc_comp) const;
bool operator <= (const gct_String & co_comp) const;
bool operator > (const t_Char * pc_comp) const;
bool operator > (const gct_String & co_comp) const;
bool operator >= (const t_Char * pc_comp) const;
bool operator >= (const gct_String & co_comp) const;

Assignment Operators
gct_String & operator = (t_Char c_asgn);

Replaces the contents with the character c_asgn.

gct_String & operator = (const t_Char * pc_asgn);

Replaces the contents with a copy of the null-terminated string pc_asgn (check for self-assignment).

gct_String & operator = (const gct_String & co_asgn);

Replaces the contents with a copy of the string object co_asgn (check for self-assignment).

Append Operators
gct_String & operator += (t_Char c_app);

Appends the character c_app.

gct_String & operator += (const t_Char * pc_app);

Appends a copy of the null-terminated string pc_app (check for self-assignment).

gct_String & operator += (const gct_String & co_app);

Appends a copy of the string object co_app (check for self-assignment).

Concatenation Operators
The following concatenation operators return a temporary object containing the concatenation of the
two operands. The two operands remain unchanged.

gct_String operator + (t_Char c_app) const;
gct_String operator + (const t_Char * pc_app) const;
gct_String operator + (const gct_String & co_app) const;
friend gct_String operator + (t_Char c_init, const gct_String & co_app);
friend gct_String operator + (const t_Char * pc_init, const gct_String & co_app);

Conversion
The following methods use global system interface functions to convert char and wchar_t strings (see
above 'Character and String Conversion').

template <class t_string> void Convert (const t_string & co_asgn);

Replaces the contents with a copy of the string object co_asgn (no multibyte conversion).

template <class t_string> bool MbConvert (const t_string & co_asgn);

Replaces the contents with a copy of the string object co_asgn (multibyte conversion).

Spirick Tuning Reference Manual Page 121

template <class t_asgnChar> bool MbConvert (const t_asgnChar * po_asgn);

Replaces the contents with a copy of the null-terminated string pc_asgn (multibyte conversion).

3.2.2 String Instances (tuning/xxx/[w]string.h)

Some template instances are predefined to easily use the string interface. The macros
STRING_DCL(t_Block, StoreSpec) and WSTRING_DCL(t_Block, StoreSpec) generate for a wrapper class of a
global store one string class.

The macro

STRING_DCL (gct_AnyBlock, ct_Any32)

expands to:

typedef gct_String <gct_CharBlock <gct_NullDataBlock
 <gct_AnyBlock <ct_Any32Store>, char>, char>, ct_Any32Store> ct_Any32String;

The macro

WSTRING_DCL (gct_AnyBlock, ct_Any32)

expands to:

typedef gct_String <gct_CharBlock <gct_NullDataBlock
 <gct_AnyBlock <ct_Any32Store>, wchar_t>, wchar_t>, ct_Any32Store> ct_Any32WString;

Every directory of a global store contains the files 'string.h' and 'wstring.h'.

The file 'tuning/std/[w]string.h' contains the following declaration:
typedef ... ct_Std_[W]String;

The file 'tuning/rnd/[w]string.h' contains the following declaration:
typedef ... ct_Rnd_[W]String;

The file 'tuning/chn/[w]string.h' contains the following declaration:
typedef ... ct_Chn_[W]String;

3.2.3 Polymorphic String Classes (tuning/[w]string.hpp)

Polymorphic string classes are derived from the abstract base class ct_Object. They can be managed by
polymorphic collections and used by other polymorphic API’s. The two string classes ct_String and
ct_WString are predefined, other polymorphic string classes can be defined if necessary. The macro
OBJ_STRING_DCL(StoreSpec) generates a string class using a predefined template instance.

The macro

OBJ_STRING_DCL(ct_Chn_Obj)

expands to:

class ct_Chn_ObjectString: public ct_Chn_ObjString
 {
public:
 inline ct_Chn_ObjectString ();
 inline ct_Chn_ObjectString (t_Char c_init);

Spirick Tuning Reference Manual Page 122

 inline ct_Chn_ObjectString (t_Char c_init, t_Size o_len);
 inline ct_Chn_ObjectString (const t_Char * pc_init);
 inline ct_Chn_ObjectString (const t_Char * pc_init, t_Size o_len);
 inline ct_Chn_ObjectString (const ct_Chn_ObjString & co_init);
 inline ct_Chn_ObjectString (const ct_Chn_ObjectString & co_init);
 TL_CLASSID (ct_Chn_ObjectString)
 virtual bool operator < (const ct_Object & co_comp) const;
 virtual t_UInt GetHash () const;
 inline ct_Chn_ObjectString & operator = (t_Char c_asgn);
 inline ct_Chn_ObjectString & operator = (const t_Char * pc_asgn);
 inline ct_Chn_ObjectString & operator = (const ct_Chn_ObjectString & co_asgn);
 };
...

Additional Methods
bool operator < (const ct_Object & co_comp) const;

This comparison operator is used by sorted array collections.

The file 'tuning/string.hpp' contains the following declaration:
OBJ_STRING_DCL(ct_Chn_Obj)
typedef ct_Chn_ObjectString ct_String;

The file 'tuning/wstring.hpp' contains the following declaration:
OBJ_STRING_DCL(ct_Chn_WObj)
typedef ct_Chn_WObjectString ct_WString;

3.2.4 Filename (tuning/filename.hpp)

The class ct_FileName provides several methods to manipulate filenames. A filename is stored as a null-
terminated string. Filename components are determined by offset values stored in the filename object.

A filename consists of four components: Drive, Path, Name and Ext. The combination of Drive and Path is
called DrivePath, the combination of Name and Ext is called NameExt. The path component always includes a
terminating [back]slash. A Path without the terminating [back]slash is called PurePath, a DrivePath without
the terminating [back]slash is called PureDrivePath.

The class ct_FileName supports the Universal Naming Convention (UNC). The Drive component can
contain a drive specification (e.g. "C:") or a network path (e.g. "\\server\\share"). The methods HasDrive
and HasUNC can be used to distinguish between these two cases.

The MS Windows implementation automatically replaces slash characters with backslash characters
(Linux impl. vice versa). The terminating [back]slash of a path component is appended if necessary. The
extension component does not include a period.

There are two different assignment methods. The method 'Assign as Name' tries to locate the name and
extension components at the end of the string. The method 'Assign as Path' interprets the whole string
as a drive-path component.

Base Classes
ct_Object (see above 'Abstract Object')
 ct_String (see above 'Polymorphic String')

Class Declaration
class ct_FileName: public ct_String
 {

Spirick Tuning Reference Manual Page 123

 ct_FileName ();
 ct_FileName (const char * pc_init);
 ct_FileName & operator = (const char * pc_asgn);
 ct_FileName & operator = (const ct_FileName & co_asgn);

 inline void AssignAsPath (const char * pc_path);
 void AssignAsPath (const char * pc_path, t_Size u_len);
 inline void AssignAsPath (const ct_String & co_path);
 inline void AssignAsName (const char * pc_name);
 void AssignAsName (const char * pc_name, t_Size u_len);
 inline void AssignAsName (const ct_String & co_name);

 bool HasDriveOrUNC () const;
 bool HasDrive () const;
 bool HasUNC () const;
 bool HasPath () const;
 bool HasName () const;
 bool HasExt () const;
 bool HasDot () const;
 bool HasWildCards () const;

 inline t_Size GetDriveLen () const;
 inline t_Size GetPathLen () const;
 inline t_Size GetPurePathLen () const;
 inline t_Size GetDrivePathLen () const;
 inline t_Size GetPureDrivePathLen () const;
 inline t_Size GetNameLen () const;
 inline t_Size GetExtLen () const;
 inline t_Size GetNameExtLen () const;
 inline t_Size GetDotLen () const;
 inline t_Size GetAllLen () const;

 inline t_Size GetDriveOffs () const;
 inline t_Size GetPathOffs () const;
 inline t_Size GetNameOffs () const;
 inline t_Size GetExtOffs () const;

 inline const char * GetDriveStr () const;
 inline const char * GetPathStr () const;
 inline const char * GetNameStr () const;
 inline const char * GetExtStr () const;
 inline const char * GetAllStr () const;

 inline ct_String GetDrive () const;
 inline ct_String GetPath () const;
 inline ct_String GetPurePath () const;
 inline ct_String GetDrivePath () const;
 inline ct_String GetPureDrivePath () const;
 inline ct_String GetName () const;
 inline ct_String GetExt () const;
 inline ct_String GetNameExt () const;

 inline void SetDrive (const char * pc);
 void SetDrive (const char * pc, t_Size u_len);
 inline void SetDrive (const ct_String & co);
 inline void SetPath (const char * pc);
 void SetPath (const char * pc, t_Size u_len);
 inline void SetPath (const ct_String & co);
 inline void SetDrivePath (const char * pc);
 void SetDrivePath (const char * pc, t_Size u_len);
 inline void SetDrivePath (const ct_String & co);
 inline void SetName (const char * pc);
 void SetName (const char * pc, t_Size u_len);
 inline void SetName (const ct_String & co);
 inline void SetExt (const char * pc);
 void SetExt (const char * pc, t_Size u_len);

Spirick Tuning Reference Manual Page 124

 inline void SetExt (const ct_String & co);
 inline void SetNameExt (const char * pc);
 void SetNameExt (const char * pc, t_Size u_len);
 inline void SetNameExt (const ct_String & co);

 inline void CopyDriveFrom (const ct_FileName * pco_copy);
 inline void CopyPathFrom (const ct_FileName * pco_copy);
 inline void CopyDrivePathFrom (const ct_FileName * pco_copy);
 inline void CopyNameFrom (const ct_FileName * pco_copy);
 inline void CopyExtFrom (const ct_FileName * pco_copy);
 inline void CopyNameExtFrom (const ct_FileName * pco_copy);

 inline void InsertPath (const char * pc_path);
 void InsertPath (const char * pc_path, t_Size u_len);
 inline void InsertPath (const ct_String & co_path);
 inline void InsertDrivePath (const char * pc_path);
 void InsertDrivePath (const char * pc_path, t_Size u_len);
 inline void InsertDrivePath (const ct_String & co_path);
 inline void AppendPath (const char * pc_path);
 void AppendPath (const char * pc_path, t_Size u_len);
 inline void AppendPath (const ct_String & co_path);
 void CompressPath ();
 bool IsAbs () const;
 bool IsRel () const;
 void ToAbs (const char * pc_currDrivePath, bool b_withDrive = true);
 void ToRel (const char * pc_currDrivePath, bool b_withDrive = false);
 };

Methods
ct_FileName ();

Initializes an empty filename object.

ct_FileName (const char * pc_init);

Initializes a filename object by calling the method AssignAsName.

ct_FileName & operator = (const char * pc_asgn);

Calls the method AssignAsName.

ct_FileName & operator = (const ct_FileName & co_asgn);

Replaces the contents with a copy of the filename object co_asgn.

void AssignAsPath (const char * pc_path);
void AssignAsPath (const char * pc_path, t_Size u_len);
void AssignAsPath (const ct_String & co_path);

Replace the contents with a copy of the arguments. These methods interpret the whole string as a
drive-path component.

void AssignAsName (const char * pc_name);
void AssignAsName (const char * pc_name, t_Size u_len);
void AssignAsName (const ct_String & co_name);

Replace the contents with a copy of the arguments. These methods try to locate the name and
extension components at the end of the string.

Spirick Tuning Reference Manual Page 125

bool HasDriveOrUNC () const;
bool HasDrive () const;
bool HasUNC () const;
bool HasPath () const;
bool HasName () const;
bool HasExt () const;

These methods return true if a specific component exists.

bool HasDot () const;

Returns true if there is a period (dot) between name and extension.

bool HasWildCards () const;

Returns true if name or extension contain wildcard characters ('*' or '?').

t_Size GetDriveLen () const;
t_Size GetPathLen () const;
t_Size GetPurePathLen () const;
t_Size GetDrivePathLen () const;
t_Size GetPureDrivePathLen () const;
t_Size GetNameLen () const;
t_Size GetExtLen () const;
t_Size GetNameExtLen () const;

These methods return the length of a specific component.

t_Size GetDotLen () const;

Returns 1 if there is a period (dot) between name and extension, otherwise zero is returned.

t_Size GetAllLen () const;

Returns the length of the whole filename.

t_Size GetDriveOffs () const;
t_Size GetPathOffs () const;
t_Size GetNameOffs () const;
t_Size GetExtOffs () const;

These methods return the position (offset) of a specific component.

const char * GetDriveStr () const;
const char * GetPathStr () const;
const char * GetNameStr () const;
const char * GetExtStr () const;
const char * GetAllStr () const;

These methods return a pointer to the beginning of a specific component.

ct_String GetDrive () const;
ct_String GetPath () const;
ct_String GetPurePath () const;
ct_String GetDrivePath () const;
ct_String GetPureDrivePath () const;
ct_String GetName () const;
ct_String GetExt () const;
ct_String GetNameExt () const;

These methods return a specific component as a string object.

Spirick Tuning Reference Manual Page 126

void SetDrive (const char * pc);
void SetDrive (const char * pc, t_Size u_len);
void SetDrive (const ct_String & co);
void SetPath (const char * pc);
void SetPath (const char * pc, t_Size u_len);
void SetPath (const ct_String & co);
void SetDrivePath (const char * pc);
void SetDrivePath (const char * pc, t_Size u_len);
void SetDrivePath (const ct_String & co);
void SetName (const char * pc);
void SetName (const char * pc, t_Size u_len);
void SetName (const ct_String & co);
void SetExt (const char * pc);
void SetExt (const char * pc, t_Size u_len);
void SetExt (const ct_String & co);
void SetNameExt (const char * pc);
void SetNameExt (const char * pc, t_Size u_len);
void SetNameExt (const ct_String & co);

Replace the contents of a specific component with a copy of the arguments.

void CopyDriveFrom (const ct_FileName * pco_copy);
void CopyPathFrom (const ct_FileName * pco_copy);
void CopyDrivePathFrom (const ct_FileName * pco_copy);
void CopyNameFrom (const ct_FileName * pco_copy);
void CopyExtFrom (const ct_FileName * pco_copy);
void CopyNameExtFrom (const ct_FileName * pco_copy);

Copy the contents of a specific component from another filename object.

void InsertPath (const char * pc_path);
void InsertPath (const char * pc_path, t_Size u_len);
void InsertPath (const ct_String & co_path);

Insert a copy of the arguments at the beginning of the path component.

void InsertDrivePath (const char * pc_path);
void InsertDrivePath (const char * pc_path, t_Size u_len);
void InsertDrivePath (const ct_String & co_path);

Insert a copy of the arguments at the beginning of the path component and replace the drive
component.

void AppendPath (const char * pc_path);
void AppendPath (const char * pc_path, t_Size u_len);
void AppendPath (const ct_String & co_path);

Append a copy of the arguments at the end of the path component.

void CompressPath ();

Compresses the path component, i.e. deletes ".\" and "path\..\" patterns.

bool IsAbs () const;

Returns true if the path component is an absolute path (beginning with a [back]slash).

bool IsRel () const;

Returns true if the path component is a relative path (not beginning with a [back]slash).

void ToAbs (const char * pc_currDrivePath, bool b_withDrive = true);

Converts the path component, which is relative to the directory pc_currDrivePath, to an absolute path. If
b_withDrive equals true, the drive component is copied from pc_currDrivePath, otherwise the drive
component is cleared.

Spirick Tuning Reference Manual Page 127

void ToRel (const char * pc_currDrivePath, bool b_withDrive = false);

Converts the path component, which is an absolute path, to a path relative to the directory
pc_currDrivePath. If b_withDrive equals true, the drive component is copied from pc_currDrivePath,
otherwise the drive component is cleared.

3.2.5 Formatted Strings (tuning/printf.hpp)

The char and wchar_t versions of tl_VSprintf interpret the parameter list like a printf parameter list. The
destination buffer is dynamically allocated. It is recommended to use the gct_String methods AssignF,
AppendF, InsertF and ReplaceF instead of tl_VSprintf. See also the sample program 'tstring'.

Functions
int tl_VSprintf (char * * ppc_buffer, const char * pc_format, va_list o_argList);
int tl_VSprintf (wchar_t * * ppc_buffer, const wchar_t * pc_format, va_list o_argList);

Formats the string pc_format with the parameters o_argList and writes the resulting string to a
destination buffer which is allocated by malloc. On success, the length of the resulting string is returned
(without the terminating null character), and the buffer * ppc_buffer must be released by free. On failure,
a negative number is returned, and the pointer * ppc_buffer can be ignored.

3.2.6 String Sort Algorithm (tuning/stringsort.hpp)

This section describes an optimized string sort algorithm. Strings consist of characters, and characters
have a value range from 0 to 255. To sort values in this range, no special sort algorithm is required. The
values can be entered into an array of size 256. Afterwards the array can be iterated, and the values
will appear in sorted order. This method can be applied to the first, the second, the third etc. character
of a set of strings.

The sort order can be changed by a 'sort page' of size 256. The first entry of a sort page must be equal
to zero. The private method GetDefaultSortPage returns a sort page containing consecutive numbers.

To sort N null-terminated strings, an array of N pointers to strings (const char * * ppc_strings) must be
prepared by the caller of the algorithm. The results are written to an array of N t_Int values (t_Int *
pi_sortedIndex) allocated by the caller. At the end of the calculation, this array will contain indices into
the string array in sorted order.

The computing time depends on the maximum number of leading equal characters. The sort algorithm
requires the following memory:
1. The input array char * apc [n] and the output array t_Int ai [n].
2. The array t_Int ai_temp [n] to store temporary chains.
3. x * 256 * sizeof (t_Int) bytes to store temporary order data. x is the maximum number of leading

equal characters.

Class Declaration
class ct_StringSort
 {
public:
 bool Sort (const char * * ppc_strings, t_Int * pi_sortedIndex, t_Int i_numOfStrings,
 const char * pc_sortPage = GetDefaultSortPage ());
 };

Spirick Tuning Reference Manual Page 128

Methods
bool Sort (const char * * ppc_strings, t_Int * pi_sortedIndex, t_Int i_numOfStrings, const char * pc_sortPage =
GetDefaultSortPage ());

Sorts the input data ppc_strings and stores the result in pi_sortedIndex. Temporary data are allocated and
released automatically.

3.2.7 Number Sort Algorithm (tuning/stringsort.hpp)

The string sort algorithm (see above) can be modified to sort unsigned integer values. A t_UInt32 value
can be interpreted as a sequence of 4 unsigned characters. The implementation of the number sort
algorithm supports little-endian hardware.

Class Declaration
class ct_UInt32Sort
 {
public:
 bool Sort (const t_UInt32 * pu_ints, t_Int * pi_sortedIndex,
 t_Int i_numOfInts);
 };

Methods
bool Sort (const t_UInt32 * pu_ints, t_Int * pi_sortedIndex, t_Int i_numOfInts);

Sorts the input data pu_ints and stores the result in pi_sortedIndex. Temporary data are allocated and
released automatically.

3.3 Files and Directories

3.3.1 Files (tuning/file.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_File provides an object oriented interface for the global file functions (see above 'File I/O').
The methods TryOpen, Open, Create, Load, Save, Exists, Move, Copy and Delete must not be called while the
file is open.

Base Classes
ct_Object (see above 'Abstract Object')
 ct_String (see above 'Polymorphic String')
 ct_FileName (see above 'Filename')

Class Declaration
class ct_File: public ct_FileName
 {
public:
 ct_File ();
 ct_File (const char * pc_init);

Spirick Tuning Reference Manual Page 129

 ct_File (const ct_FileName & co_init);
 ~ct_File ();
 ct_File & operator = (const char * pc_asgn);
 ct_File & operator = (const ct_FileName & co_asgn);

 bool TryOpen (bool b_readOnly = true, bool b_sequential = true,
 t_UInt32 u_milliSec = 0);
 bool Open (bool b_readOnly = true, bool b_sequential = true);
 bool Create (bool b_createNew = false);
 bool Close ();

 bool Load (ct_String * pco_str);
 bool Save (const ct_String * pco_str);

 bool Exists ();
 bool Move (const char * pc_new);
 bool Copy (const char * pc_new, bool b_overwrite = true);
 bool Delete ();

 bool QuerySize (t_FileSize & o_size) const;
 bool QueryPos (t_FileSize & o_pos) const;
 bool EndOfFile (bool & b_eof) const;
 bool SeekAbs (t_FileSize o_pos) const;
 bool SeekRel (t_FileSize o_pos) const;
 bool Truncate (t_FileSize o_size) const;
 bool Read (void * pv_dst, t_FileSize o_len) const;
 bool Write (const void * pv_src, t_FileSize o_len) const;
 };

Methods
ct_File ();

Initializes an empty file object.

ct_File (const char * pc_init);

Initializes a file object by calling the method ct_FileName::AssignAsName.

ct_File (const ct_FileName & co_init);

Initializes a file object by calling the copy constructor of ct_FileName.

~ct_File ();

The destructor closes the file object.

ct_File & operator = (const char * pc_asgn);

Calls ct_FileName::AssignAsName (pc_asgn).

ct_File & operator = (const ct_FileName & co_asgn);

Assigns a new filename.

bool TryOpen (bool b_readOnly = true, bool b_sequential = true, t_UInt32 u_milliSec = 0);

Tries to open an existing file. The method will wait for at most u_milliSec milliseconds. The parameter
b_readOnly determines the access mode. The parameter b_sequential is a hint to optimize file caching
(sequential or random access).

bool Open (bool b_readOnly = true, bool b_sequential = true);

Opens an existing file. The parameter b_readOnly determines the access mode. The parameter
b_sequential is a hint to optimize file caching (sequential or random access).

Spirick Tuning Reference Manual Page 130

bool Create (bool b_createNew = false);

Creates a new file and opens it for read/write access. Returns false if b_createNew equals true and the
specified file already exists. Otherwise the function overwrites the existing file.

bool Close ();

Closes an open file.

bool Load (ct_String * pco_str);

Loads the entire contents of the file into the string object pco_str (open, read, close). The file must not
contain null characters.

bool Save (const ct_String * pco_str);

Saves the entire contents of the string object pco_str into the file (open, write, close).

bool Exists ();

Returns true if the file exists.

bool Move (const char * pc_new);

Moves (renames) the file either in the same directory or across directories. On success the own filename
(base class ct_FileName) is changed as well.

bool Copy (const char * pc_new, bool b_overwrite = true);

Copies the existing file to a new file. Returns false if b_overwrite equals false and the specified file
already exists.

bool Delete ();

Deletes the existing file.

bool QuerySize (t_FileSize & o_size) const;

Retrieves the size of the open file and stores the result in o_size.

bool QueryPos (t_FileSize & o_pos) const;

Retrieves the file pointer of the open file and stores the result in o_pos.

bool EndOfFile (bool & b_eof) const;

Sets b_eof to true if the file pointer is located at the end of the file.

bool SeekAbs (t_FileSize o_pos) const;

Moves the file pointer of the open file to the absolute position o_pos (an offset from the beginning of the
file).

bool SeekRel (t_FileSize o_pos) const;

Moves the file pointer of the open file to the relative position o_pos (relative to the current position).

bool Truncate (t_FileSize o_size);

Sets the size for the open file to o_size.

bool Read (void * pv_dst, t_FileSize o_len) const;

Reads o_len bytes from the open file to the buffer pv_dst and moves the file pointer.

bool Write (const void * pv_src, t_FileSize o_len) const;

Writes o_len bytes from the buffer pv_src to the open file and moves the file pointer.

Spirick Tuning Reference Manual Page 131

3.3.2 Directories (tuning/dir.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_Directory provides an object oriented interface for the global directory functions (see above
'sys/cdir.hpp'). This class uses the drive and path components of the base class ct_FileName
(PureDrivePath), the name and extension components of the filename are ignored.

Base Classes
ct_Object (see above 'Abstract Object')
 ct_String (see above 'Polymorphic String')
 ct_FileName (see above 'Filename')

Class Declaration
class ct_Directory: public ct_FileName
 {
public:
 ct_Directory ();
 ct_Directory (const char * pc_init);
 ct_Directory (const ct_FileName & co_init);
 ct_Directory & operator = (const char * pc_asgn);
 ct_Directory & operator = (const ct_FileName & co_asgn);

 bool QueryCurrentDrive ();
 bool QueryCurrentDirectory ();
 bool QueryCurrentDriveDirectory ();

 bool Create ();
 bool Exists ();
 bool Move (const char * pc_new);
 bool Delete ();
 };

Methods
ct_Directory ();

Initializes an empty directory object.

ct_Directory (const char * pc_init);

Initializes a directory object by calling the method ct_FileName::AssignAsPath.

ct_Directory (const ct_FileName & co_init);

Initializes a directory object by calling the copy constructor of ct_FileName.

ct_Directory & operator = (const char * pc_asgn);

Calls ct_FileName::AssignAsPath (pc_asgn).

ct_Directory & operator = (const ct_FileName & co_asgn);

Assigns a new filename.

bool QueryCurrentDrive ();

Retrieves the current drive and stores the result in the drive component of the filename.

Spirick Tuning Reference Manual Page 132

bool QueryCurrentDirectory ();

Retrieves the current directory of the drive specified by the drive component and stores the result in the
path component of the filename.

bool QueryCurrentDriveDirectory ();

Retrieves the current directory and stores the result in the drive-path component of the filename.

bool Create ();

Creates a directory.

bool Exists ();

Returns true if the directory exists.

bool Move (const char * pc_new);

Moves (renames) the directory either in the same directory or across directories. On success the own
filename (base class ct_FileName) is changed as well.

bool Delete ();

Deletes an empty directory.

3.3.3 Directory Scan (tuning/dirscan.hpp)

Within the Spirick Tuning library all file and directory paths are interpreted as UTF-8 strings. The Linux
implementation passes the path names unchanged to the corresponding system functions. The MS
Windows implementation converts the path names temporarily to UTF-16.

The class ct_DirScan is derived from ct_Directory. The drive and path components of the filename
determine the directory to scan. The name and extension components are used for input and output
data. Before scanning a directory, these components contain the search pattern. While scanning a
directory, these components contain the name and extension of the current directory entry.

Note that changing the contents of a directory while scanning it can lead to unpredictable results. It is
recommended to cache the results of a directory scan in a data stucture before changing the contents
of the directory.

The class ct_DirScan can also be used to retrieve information about a single file or directory. If the search
pattern does not contain any wildcard characters ('*' or '?'), multiple information about a directory
entry are retrieved by a single function call. The FindOnce methods consist of three steps: abort an active
scan, assign a new search pattern and start a new scan.

Base Classes
ct_Object (see above 'Abstract Object')
 ct_String (see above 'Polymorphic String')
 ct_FileName (see above 'Filename')
 ct_Directory (see above 'Directory')

Data Types, Constants
typedef unsigned t_FileAttributes;

const t_FileAttributes co_AttrArchive = 0x01;
const t_FileAttributes co_AttrDirectory = 0x02;
const t_FileAttributes co_AttrHidden = 0x04;
const t_FileAttributes co_AttrReadOnly = 0x08;

Spirick Tuning Reference Manual Page 133

const t_FileAttributes co_AttrSystem = 0x10;

Values of the integer type t_FileAttributes can combine multiple attribute flags via an OR operation.

Class Declaration
class ct_DirScan: public ct_Directory
 {
public:
 ct_DirScan ();
 ct_DirScan (const char * pc_init);
 ct_DirScan (const ct_FileName & co_init);
 ~ct_DirScan ();
 ct_DirScan & operator = (const char * pc_asgn);
 ct_DirScan & operator = (const ct_FileName & co_asgn);

 bool FindOnce ();
 bool FindOnce (const char * pc_find);
 bool FindOnce (const ct_FileName & co_find);
 bool FindOncePath ();
 bool FindOncePath (const ct_FileName & co_find);

 bool FindFirst ();
 bool FindFirstFile ();
 bool FindFirstDirectory ();
 bool FindNext ();
 bool FindNextFile ();
 bool FindNextDirectory ();
 void AbortFind ();
 bool Found ();

 t_MicroTime GetCreationTime () const;
 t_MicroTime GetLastAccessTime () const;
 t_MicroTime GetLastWriteTime () const;
 t_FileSize GetSize () const;
 t_FileAttributes GetAttributes () const;
 bool IsArchive () const;
 bool IsDirectory () const;
 bool IsHidden () const;
 bool IsReadOnly () const;
 bool IsSystem () const;
 };

Methods
ct_DirScan ();

Initializes an empty dirscan object.

ct_DirScan (const char * pc_init);

Initializes a dirscan object by calling the method ct_FileName::AssignAsName.

ct_DirScan (const ct_FileName & co_init);

Initializes a dirscan object by calling the copy constructor of ct_FileName.

~ct_DirScan ();

Releases all temporary data.

ct_DirScan & operator = (const char * pc_asgn);

Calls ct_FileName::AssignAsName (pc_asgn).

Spirick Tuning Reference Manual Page 134

ct_DirScan & operator = (const ct_FileName & co_asgn);

Assigns a new filename.

bool FindOnce ();

Aborts an active scan and starts a new scan using the current filename.

bool FindOnce (const char * pc_find);

Aborts an active scan, calls ct_FileName::AssignAsName (pc_find) and starts a new scan.

bool FindOnce (const ct_FileName & co_find);

Aborts an active scan, calls ct_FileName::AssignAsName (co_find) and starts a new scan.

bool FindOncePath ();

Aborts an active scan, calls ct_FileName::AssignAsName (GetPureDrivePath ()) and starts a new scan, i.e.
the method retrieves information about the drive-path component.

bool FindOncePath (const ct_FileName & co_find);

Aborts an active scan, calls ct_FileName::AssignAsName (co_find. GetPureDrivePath ()) and starts a new
scan, i.e. the method retrieves information about the drive-path component of co_find.

bool FindFirst ();

Starts a new scan (files and directories) using the current filename and retrieves information about the
first directory entry.

bool FindFirstFile ();

Starts a new scan (files only) using the current filename and retrieves information about the first
directory entry.

bool FindFirstDirectory ();

Starts a new scan (directories only) using the current filename and retrieves information about the first
directory entry.

bool FindNext ();

Iterates to the next directory entry (files and directories) and retrieves information about it.

bool FindNextFile ();

Iterates to the next directory entry (files only) and retrieves information about it.

bool FindNextDirectory ();

Iterates to the next directory entry (directories only) and retrieves information about it.

void AbortFind ();

Aborts an active scan and releases all temporary data.

bool Found ();

Returns true if the previous call of FindFirst or FindNext has returned true.

t_MicroTime GetCreationTime () const;

Returns the creation time of the current directory entry in UTC (see above 'Time and Date').

t_MicroTime GetLastAccessTime () const;

Returns the last access time of the current directory entry in UTC (see above 'Time and Date').

Spirick Tuning Reference Manual Page 135

t_MicroTime GetLastWriteTime () const;

Returns the last write time of the current directory entry in UTC (see above 'Time and Date').

t_FileSize GetSize () const;

Returns the size of the current directory entry.

t_FileAttributes GetAttributes () const;

Returns the attributes of the current directory entry.

bool IsArchive () const;
bool IsDirectory () const;
bool IsHidden () const;
bool IsReadOnly () const;
bool IsSystem () const;

Returns true if a specific flag is set.

Search Patterns
The class ct_DirScan is derived from ct_Directory. The drive and path components of the filename
determine the directory to scan. The method ct_Directory::Exists can be used to check if the directory
exists.

ct_DirScan co_dirScan;
co_dirScan. SetDrivePath ("c:\\spirick\\tuning");

if (co_dirScan. Exists ())
 // ...

The name and extension components are used for input and output data. Before scanning a directory,
these components contain the search pattern.

co_dirScan. SetNameExt ("*");

The search pattern "*" starts an unfiltered directory scan.

co_dirScan. SetNameExt ("*.?pp");

MS Windows only: The search pattern can be a combination of literal and wildcard characters ('*' or
'?').

co_dirScan. SetNameExt ("dirscan.hpp");

If the search pattern is a unique name of a file or directory, multiple information about the directory
entry are retrieved by a single function call.

Sample Code
The following sample code demonstrates an unfiltered directory scan.

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirst ();
 co_dirScan. Found ();
 co_dirScan. FindNext ())
 {
 // ...
 }

Scan files only:

Spirick Tuning Reference Manual Page 136

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstFile ();
 co_dirScan. Found ();
 co_dirScan. FindNextFile ())
 {
 // ...
 }

Scan directories only:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstDirectory ();
 co_dirScan. Found ();
 co_dirScan. FindNextDirectory ())
 {
 // ...
 }

3.4 Additional Utilities

3.4.1 Time and Date (tuning/timedate.hpp)

The class ct_TimeDate provides an object oriented interface for the global time and date functions (see
above 'sys/ctimedate.hpp'). Time values are expressed in microseconds since 1/1/1970. The current
time can be queried in UTC and local time.

Class Declaration
class ct_TimeDate
 {
public:
 ct_TimeDate ();
 ct_TimeDate (t_MicroTime i_time);

 void Clear ();
 t_MicroTime GetTime () const;
 void SetTime (t_MicroTime i_time);

 void QueryUTCTime ();
 void QueryLocalTime ();

 inline unsigned GetYear () const;
 inline unsigned GetMonth () const;
 inline unsigned GetDay () const;
 inline unsigned GetDayOfWeek () const;
 inline unsigned GetHour () const;
 inline unsigned GetMinute () const;
 inline unsigned GetSecond () const;
 inline unsigned GetMicroSecond () const;

 inline void SetYear (unsigned u);
 inline void SetMonth (unsigned u);
 inline void SetDay (unsigned u);
 inline void SetDayOfWeek (unsigned u);
 inline void SetHour (unsigned u);
 inline void SetMinute (unsigned u);
 inline void SetSecond (unsigned u);

Spirick Tuning Reference Manual Page 137

 inline void SetMicroSecond (unsigned u);

 inline bool operator == (const ct_TimeDate & co_td) const;
 inline bool operator != (const ct_TimeDate & co_td) const;
 inline bool operator < (const ct_TimeDate & co_td) const;
 inline bool operator <= (const ct_TimeDate & co_td) const;
 inline bool operator > (const ct_TimeDate & co_td) const;
 inline bool operator >= (const ct_TimeDate & co_td) const;
 };

Methods
ct_TimeDate ();

Initializes an empty time-date object.

ct_TimeDate (t_MicroTime i_time);

Converts a microsecond value to time-date components.

void Clear ();

Clears the time-date object.

t_MicroTime GetTime () const;

Converts time-date components to a microsecond value.

void SetTime (t_MicroTime i_time);

Converts a microsecond value to time-date components.

void QueryUTCTime ();

Retrieves the current time, as reported by the system clock, in UTC.

void QueryLocalTime ();

Retrieves the current time, as reported by the system clock, in the local time zone.

unsigned GetYear () const;
unsigned GetMonth () const;
unsigned GetDay () const;
unsigned GetDayOfWeek () const;
unsigned GetHour () const;
unsigned GetMinute () const;
unsigned GetSecond () const;
unsigned GetMicroSecond () const;

These methods return a specific component as an unsigned integer value.

void SetYear (unsigned u);
void SetMonth (unsigned u);
void SetDay (unsigned u);
void SetDayOfWeek (unsigned u);
void SetHour (unsigned u);
void SetMinute (unsigned u);
void SetSecond (unsigned u);
void SetMicroSecond (unsigned u);

These methods set a specific component to an unsigned integer value.

Spirick Tuning Reference Manual Page 138

bool operator == (const ct_TimeDate & co_td) const;
bool operator != (const ct_TimeDate & co_td) const;
bool operator < (const ct_TimeDate & co_td) const;
bool operator <= (const ct_TimeDate & co_td) const;
bool operator > (const ct_TimeDate & co_td) const;
bool operator >= (const ct_TimeDate & co_td) const;

These methods compare two time-date objects.

3.4.2 MD5 Sum (tuning/md5.hpp)

The class ct_MD5 can be used for a single MD5 sum calculation. The source data can be located in a
single memory block, or they can consist of several parts. The results of the calculation can be retrieved
in a textual and a binary format.

Class Declaration
typedef t_UInt8 t_MD5Result [16];

class ct_MD5
 {
public:
 ct_MD5 ();
 ct_MD5 (const t_MD5Result & ac_init);
 ct_MD5 (const void * pv_data, t_UInt u_len);

 void Update (const void * pv_data, t_UInt u_len);
 void Finalize ();
 const t_MD5Result & GetResult () const;
 const char * GetResultStr ();
 bool operator == (const ct_MD5 & co_comp) const;
 };

Methods
ct_MD5 ();

Initializes an empty MD5 object.

ct_MD5 (const t_MD5Result & ac_init);

Copies the MD5 results from another MD5 object.

ct_MD5 (const void * pv_data, t_UInt u_len);

Initializes a MD5 object and calls the methods Update and Finalize.

void Update (const void * pv_data, t_UInt u_len);

Processes a single part of the source data. Location and length of the data block are determined by
pv_data and u_len.

void Finalize ();

Stops the MD5 sum calculation. Afterwards the results can be retrieved.

const t_MD5Result & GetResult () const;

Returns the result in a binary format.

const char * GetResultStr ();

Returns the result in a textual format. The string consists of 32 lower case hexadecimal characters and
a terminating null character.

Spirick Tuning Reference Manual Page 139

bool operator == (const ct_MD5 & co_comp) const;

Compares the results of two MD5 objects.

3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

The class ct_UUID provides an interface to create and process Universally Unique Identifiers.

Class Declaration
typedef t_UInt8 t_UUID [16];

class ct_UUID
 {
public:
 ct_UUID ();
 ct_UUID (const ct_UUID & co_init);
 ct_UUID (const t_UUID & ao_init);
 ct_UUID & operator = (const ct_UUID & co_asgn);

 bool IsEmpty () const;
 t_UInt GetHash () const;
 const t_UUID & GetUUID () const;
 void Clear ();
 bool Create ();
 bool ToStr (char * pc_dst, t_UInt u_len, bool b_upperCase) const;
 bool FromStr (const char * pc_src, t_UInt u_len);

 bool operator == (const ct_UUID & co_comp) const;
 bool operator != (const ct_UUID & co_comp) const;
 };

Methods
ct_UUID ();

Initializes an empty UUID object.

ct_UUID (const ct_UUID & co_init);

Copies the data from another UUID object.

ct_UUID (const t_UUID & ao_init);

Copies the binary UUID data.

ct_UUID & operator = (const ct_UUID & co_asgn);

Copies the data from another UUID object.

bool IsEmpty () const;

Returns true if the UUID object is empty.

t_UInt GetHash () const;

Returns a hash value.

const t_UUID & GetUUID () const;

Returns a reference to the binary UUID data.

Spirick Tuning Reference Manual Page 140

void Clear ();

Clears the UUID object.

bool Create ();

Creates a new Universally Unique Identifier.

bool ToStr (char * pc_dst, t_UInt u_len, bool b_upperCase) const;

Converts the binary UUID to a string and writes the result to the buffer (pc_dst, u_len) (u_len >= 36). The
formatted string consists of 36 characters without a terminating null character. If b_upperCase equals true
upper case characters are used.

bool FromStr (const char * pc_src, t_UInt u_len);

Converts a formatted string to a binary UUID. The first 36 characters of the buffer (pc_src, u_len) (u_len
>= 36) are interpreted as a textual UUID.

bool operator == (const ct_UUID & co_comp) const;
bool operator != (const ct_UUID & co_comp) const;

Compare two UUID objects.

Spirick Tuning Reference Manual Page 141

4 DESIGN DIAGRAMS

4.1 Notation

The following sections contain some design diagrams describing the interaction of several components
of the Spirick Tuning library. The diagrams are based on the 'Unified Modeling Language' (UML). The
following diagram shows some important parts of UML class diagrams.

 0..1

1 1



1

AssociatedClass

BaseClass
Attribute

Method

Part1

Part2

DerivedClass
Value_of_Part1
Reference_to_Part2

Call_AssociatedClass

Classes are represented by rectangles which show the name of the class and optionally the attributes
and methods. The following relationships can be used:

- Inheritance
- Composition
- Aggregation
- Association

Some connectors may include cardinality at each end.

Spirick Tuning Reference Manual Page 142

4.2 Polymorphic Class Hierarchy

The following diagram shows all classes which inherit from the abstract base class ct_Object.

ct_Object

ct_Collection

ct_Array ct_SortedArray ct_DList ct_BlockDList ct_RefCollection

ct_RefDList ct_BlockRefDList

ct_WString ct_String

ct_FileName

ct_File ct_Directory

ct_DirScan

*

*

Spirick Tuning Reference Manual Page 143

4.3 An Array Container

The following (partially simplified) diagram shows all classes which are used to implement an array
container. The container instance was defined by the following sample code:

#include "tuning/chn/array.h"
class ct_Any { /* ... */ };
gct_Chn_Array <ct_Any> co_AnyArray;

The array container allocates memory using the store class ct_ChnStore. The wrapper class ct_Chn_Store
maps methods of the global store object to static class methods. The abbreviation _ determines the
nested size type t_UInt.

The class ct_Chn_Block is a predefined instance of the block template gct_Block using the wrapper class
ct_Chn_Store. The class template gct_ItemBlock is an extension of the common block interface. The helper
templates gct_FixItemBlockBase and gct_FixItemBlock are used for compile time configuration of the item
size.

The container template gct_Array is instantiated using the parameters ct_Any and gct_FixItemBlock
<t_block, sizeof (gct_ArrayNode <ct_Any>)>. The helper template gct_ArrayNode is used to construct and
destruct the contained objects. The helper template gct_FixItemArray passes the size of an object to the
template gct_FixItemBlock.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct_Chn_Array is a predefined shortcut for gct_ExtContainer <gct_FixItemArray <t_obj, ct_Chn_Block> >.

Spirick Tuning Reference Manual Page 144

ct_ChnStore

-aso_FreeChains: st_FreeChain
-o_Entries: t_UInt
-o_Size: t_UInt
-b_InFree: bool

<<CppOperator>>-=(: ct_ChnStore): ct_ChnStore
<<create>>-ct_ChnStore()
<<destroy>>-ct_ChnStore()
+Swap(co_swap: ct_ChnStore): void
<<CppOperator>>+new(u_size: size_t): void
<<CppOperator>>+delete(pv: void): void
+MaxAlloc(): t_UInt
+StoreInfoSize(): t_UInt
+Alloc(o_size: t_Size): t_Position
+Realloc(o_pos: t_Position, o_size: t_Size): t_Position
+Free(o_pos: t_Position): void
+AddrOf(o_pos: t_Position): void
+PosOf(pv_adr: void): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(o_pos: t_Position): t_Size
+CanFreeAll(): bool
+FreeAll(): void
+GetEntries(): t_UInt
+GetSize(): t_UInt
+QueryAllocEntries(): t_UInt
+QueryAllocSize(): t_UInt
+QueryFreeEntries(): t_UInt
+QueryFreeSize(): t_UInt
+FreeUnused(): void

ct_Chn_Store

+Swap(: ct_Chn_Store): void
+MaxAlloc(): t_UInt
+StoreInfoSize(): t_UInt
+Alloc(: t_Size): t_Position
+Realloc(: t_Position, : t_Size): t_Position
+Free(: t_Position): void
+AddrOf(o_pos: t_Position): void
+PosOf(pv_adr: void): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(: t_Position): t_Size
+CanFreeAll(): bool
+FreeAll(): void
+GetStore(): ct_ChnStore

gct_Block

#o_Pos: typename t_staticStore::t_Position
#o_Size: t_Size

<<create>>-gct_Block()
<<create>>-gct_Block(co_init: gct_Block)
<<destroy>>-gct_Block()
<<CppOperator>>+=(co_asgn: gct_Block): gct_Block
+Swap(co_swap: gct_Block): void
+GetByteSize(): t_Size
+SetByteSize(o_newSize: t_Size): void
+GetAddr(): void
+GetStore(): typename t_staticStore::t_Store

t_staticStore : class ct_Chn_Block

gct_ExtContainer

+GetFirstObj(): t_Object
+GetLastObj(): t_Object
+GetNextObj(o_pos: t_Position): t_Object
+GetPrevObj(o_pos: t_Position): t_Object
+GetNthObj(u_idx: t_Length): t_Object
+AddObjBeforeFirst(po_obj: t_Object): t_Position
+AddObjAfterLast(po_obj: t_Object): t_Position
+AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
+AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
+GetNewObj(po_obj: t_Object): t_Object
+GetNewFirstObj(po_obj: t_Object): t_Object
+GetNewLastObj(po_obj: t_Object): t_Object
+GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
+GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
+DelFirstObj(): t_Position
+DelLastObj(): t_Position
+DelNextObj(o_pos: t_Position): t_Position
+DelPrevObj(o_pos: t_Position): t_Position
+DelNthObj(u_idx: t_Length): t_Position
+FreeFirstObj(): t_Position
+FreeLastObj(): t_Position
+FreeNextObj(o_pos: t_Position): t_Position
+FreePrevObj(o_pos: t_Position): t_Position
+FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_FixItemBlockBase

+o_FixSize: t_Size
+o_SizeMax: t_Size

+SetFixSize(o_fs: t_Size): void

t_block : class
o_fixSize

gct_ItemBlock

-GetRawAddr_(o_pos: t_Size): char
+GetFixSize(): t_Size
+GetItemSize(): t_Size
+SetItemSize(o_size: t_Size): void
+IncItemSize1(): void
+DecItemSize1(): void
+IncItemSize(o_inc: t_Size): void
+DecItemSize(o_dec: t_Size): void
+GetItemAddr(o_pos: t_Size): void
+InsertItems(o_pos: t_Size, o_count: t_Size): void
+DeleteItems(o_pos: t_Size, o_count: t_Size): void
+GetDefaultPageSize(): t_Size
+AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_FixItemBlock

t_block : class
o_itemSize

gct_ArrayNode

+o_Obj: t_obj

<<create>>-gct_ArrayNode()
<<create>>-gct_ArrayNode(o_obj: t_obj)
<<CppOperator>>+new(: size_t, pv: void): void
<<CppOperator>>+delete(: void, : void): void
<<CppOperator>>+delete(: void): void

t_obj : class

gct_Array

<<create>>-gct_Array()
<<create>>-gct_Array(co_init: gct_Array)
<<destroy>>-gct_Array()
<<CppOperator>>+=(co_asgn: gct_Array): gct_Array
+IsEmpty(): bool
+GetLen(): t_Length
+First(): t_Position
+Last(): t_Position
+Next(o_pos: t_Position): t_Position
+Prev(o_pos: t_Position): t_Position
+Nth(u_idx: t_Length): t_Position
+GetObj(o_pos: t_Position): t_Object
+AddObj(po_obj: t_Object): t_Position
+AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
+AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
+AppendObj(po_obj: t_Object, o_count: t_Length): void
+TruncateObj(o_count: t_Length): void
+DelObj(o_pos: t_Position): t_Position
+DelAll(): void
+FreeObj(o_pos: t_Position): t_Position
+FreeAll(): void
+SetPageSize(o_size: t_Size): void

t_obj : class
t_block : class

gct_Chn_Array

t_obj : class

ct_Any

gct_FixItemArray

t_obj : Class
t_block : Class

*
1

1

*

1
1

Spirick Tuning Reference Manual Page 145

4.4 A Pointer Array Container

The following (partially simplified) diagram shows all classes which are used to implement a pointer
array container. The container instance was defined by the following sample code:

#include "tuning/chn/ptrarray.h"
class ct_Any { /* ... */ };
gct_Chn_PtrArray <ct_Any> co_AnyPtrArray;

The pointer array container allocates memory using the store class ct_ChnStore. The wrapper class
ct_Chn_Store maps methods of the global store object to static class methods. The abbreviation _
determines the nested size type t_UInt.

The class ct_Chn_Block is a predefined instance of the block template gct_Block using the wrapper class
ct_Chn_Store. The class template gct_ItemBlock is an extension of the common block interface. The helper
templates gct_FixItemBlockBase and gct_FixItemBlock are used for compile time configuration of the item
size.

The container template gct_Array is instantiated using the parameters void * and gct_FixItemBlock
<t_block, sizeof (gct_ArrayNode <void *>)>. The helper template gct_ArrayNode is used to construct and
destruct the contained pointers. The helper template gct_FixItemArray passes the size of a pointer to the
template gct_FixItemBlock.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct_Chn_Array is a predefined shortcut for gct_ExtContainer <gct_FixItemArray <t_obj, ct_Chn_Block> >.

The class template gct_CompContainer implements some count, search and conditional methods. The class
template gct_PtrContainer provides a comfortable interface for pointer containers. It maps many methods
of the basic, extended and comp-container interface and provides some additional methods. The
template gct_Chn_PtrArray is a predefined shortcut for gct_PtrContainer <ct_Any, gct_Chn_Array <void *> >.

Spirick Tuning Reference Manual Page 146

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn_Store

Swap(: ct_Chn_Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()
gct_Block(co_init: gct_Block)
gct_Block()
=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void
GetStore(): typename t_staticStore::t_Store

t_staticStore : class

ct_Chn_Block

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_FixItemBlockBase

o_FixSize: t_Size
o_SizeMax: t_Size

SetFixSize(o_fs: t_Size): void

t_block : class
o_fixSize

gct_ItemBlock

GetRawAddr_(o_pos: t_Size): char
GetFixSize(): t_Size
GetItemSize(): t_Size
SetItemSize(o_size: t_Size): void
IncItemSize1(): void
DecItemSize1(): void
IncItemSize(o_inc: t_Size): void
DecItemSize(o_dec: t_Size): void
GetItemAddr(o_pos: t_Size): void
InsertItems(o_pos: t_Size, o_count: t_Size): void
DeleteItems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_FixItemBlock

t_block : class
o_itemSize

gct_ArrayNode

o_Obj: t_obj

gct_ArrayNode()
gct_ArrayNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class

gct_Array

Node(o_pos: t_Position): gct_ArrayNode <t_obj>
CopyFrom(co_copy: gct_Array): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_Array()
gct_Array(co_init: gct_Array)
gct_Array()
=(co_asgn: gct_Array): gct_Array
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
SetPageSize(o_size: t_Size): void

t_obj : class
t_block : class

gct_Chn_Array

t_obj : class

gct_CompContainer

ContainsObj(po_obj: t_Object): bool
CountObjs(po_obj: t_Object): t_Length
SearchFirstObj(po_obj: t_Object): t_Position
SearchLastObj(po_obj: t_Object): t_Position
SearchNextObj(o_pos: t_Position, po_obj: t_Object): t_Position
SearchPrevObj(o_pos: t_Position, po_obj: t_Object): t_Position
GetFirstEqualObj(po_obj: t_Object): t_Object
GetLastEqualObj(po_obj: t_Object): t_Object
AddObjCond(po_obj: t_Object): t_Position
AddObjBeforeFirstCond(po_obj: t_Object): t_Position
AddObjAfterLastCond(po_obj: t_Object): t_Position
DelFirstEqualObj(po_obj: t_Object): t_Position
DelLastEqualObj(po_obj: t_Object): t_Position
DelFirstEqualObjCond(po_obj: t_Object): t_Position
DelLastEqualObjCond(po_obj: t_Object): t_Position

t_container : class

gct_PtrContainer

gct_PtrContainer()
GetPtr(o_pos: t_Position): t_obj
GetFirstPtr(): t_obj
GetLastPtr(): t_obj
GetNextPtr(o_pos: t_Position): t_obj
GetPrevPtr(o_pos: t_Position): t_obj
GetNthPtr(u_idx: t_Length): t_obj
AddPtr(po_obj: t_obj): t_Position
AddPtrBefore(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrAfter(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrBeforeFirst(po_obj: t_obj): t_Position
AddPtrAfterLast(po_obj: t_obj): t_Position
AddPtrBeforeNth(u_idx: t_Length, po_obj: t_obj): t_Position
AddPtrAfterNth(u_idx: t_Length, po_obj: t_obj): t_Position
DelPtr(o_pos: t_Position): t_Position
DelFirstPtr(): t_Position
DelLastPtr(): t_Position
DelNextPtr(o_pos: t_Position): t_Position
DelPrevPtr(o_pos: t_Position): t_Position
DelNthPtr(u_idx: t_Length): t_Position
DelAllPtr(): void
DelPtrAndObj(o_pos: t_Position): t_Position
DelFirstPtrAndObj(): t_Position
DelLastPtrAndObj(): t_Position
DelNextPtrAndObj(o_pos: t_Position): t_Position
DelPrevPtrAndObj(o_pos: t_Position): t_Position
DelNthPtrAndObj(u_idx: t_Length): t_Position
DelAllPtrAndObj(): void
ContainsPtr(po_obj: t_obj): bool
CountPtrs(po_obj: t_obj): t_Length
SearchFirstPtr(po_obj: t_obj): t_Position
SearchLastPtr(po_obj: t_obj): t_Position
SearchNextPtr(o_pos: t_Position, po_obj: t_obj): t_Position
SearchPrevPtr(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrCond(po_obj: t_obj): t_Position
AddPtrBeforeFirstCond(po_obj: t_obj): t_Position
AddPtrAfterLastCond(po_obj: t_obj): t_Position
DelFirstEqualPtr(po_obj: t_obj): t_Position
DelLastEqualPtr(po_obj: t_obj): t_Position
DelFirstEqualPtrCond(po_obj: t_obj): t_Position
DelLastEqualPtrCond(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObj(po_obj: t_obj): t_Position
DelLastEqualPtrAndObj(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObjCond(po_obj: t_obj): t_Position
DelLastEqualPtrAndObjCond(po_obj: t_obj): t_Position

t_obj : class
t_container : class

gct_Chn_PtrArray

t_obj : class

ct_Any

gct_FixItemArray

t_obj : Class
t_block : Class

*

1

1

*

*

0..1

Spirick Tuning Reference Manual Page 147

4.5 A List Container

The following (partially simplified) diagram shows all classes which are used to implement a list
container. The container instance was defined by the following sample code:

#include "tuning/chn/dlist.h"
class ct_Any { /* ... */ };
gct_Chn32DList <ct_Any> co_AnyDList;

The list container allocates memory using the store class ct_ChnStore. The wrapper class ct_Chn32Store
maps methods of the global store object to static class methods. The abbreviation 32 determines the
nested size type t_UInt32.

The container template gct_DList is instantiated using the parameters ct_Any and ct_Chn32Store. The list
class contains a data member of type t_store. The helper template gct_DListNode is used to construct and
destruct the contained objects. Every list node contains references (position values) to the direct
neighbors.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct_Chn32DList is a predefined shortcut for gct_ExtContainer <gct_DList <ct_Any, ct_Chn32Store> >.

Spirick Tuning Reference Manual Page 148

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class
t_ptr : class

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_DList()
gct_DList(co_init: gct_DList)
gct_DList()
=(co_asgn: gct_DList): gct_DList
Swap(co_swap: gct_DList): void
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
GetStore(): t_store

t_obj : class
t_store : class

gct_Chn32DList

t_obj : class

ct_Any

*

1

1

1

1 *

1

1

Spirick Tuning Reference Manual Page 149

4.6 A Block List Container

The following (partially simplified) diagram shows all classes which are used to implement a block list
container. The container instance was defined by the following sample code:

#include "tuning/chn/blockdlist.h"
class ct_Any { /* ... */ };
gct_Chn32BlockDList <ct_Any> co_AnyBlockDList;

The block list container allocates memory using the store class ct_ChnStore. The wrapper class
ct_Chn32Store maps methods of the global store object to static class methods. The abbreviation 32
determines the nested size type t_UInt32.

The class ct_Chn32Block is a predefined instance of the block template gct_Block using the wrapper class
ct_Chn32Store. The class template gct_ItemBlock is an extension of the common block interface. The
helper templates gct_VarItemBlockBase and gct_VarItemBlock are used for runtime configuration of the item
size.

A block store uses an item block for compact storage of smaller, equal-sized memory blocks. The store
template gct_BlockStore is instantiated using the parameters gct_VarItemBlock <ct_Chn32Block> and
gct_CharBlock <ct_Chn32Block, char>. The template ct_Chn32BlockStore is a predefined shortcut for
gct_BlockStore <gct_Var..., gct_Char...>.

The container template gct_DList is instantiated using the parameters ct_Any and ct_Chn32BlockStore. The
list class contains a data member of type t_store. The helper template gct_DListNode is used to construct
and destruct the contained objects. Every list node contains references (position values) to the direct
neighbors.

The class template gct_ExtContainer enhances the usability of the basic container interface. The template
gct_Chn32BlockDList is a predefined shortcut for gct_ExtContainer <gct_DList <ct_Any, ct_Chn32BlockStore> >.

Spirick Tuning Reference Manual Page 150

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()
gct_Block(co_init: gct_Block)
gct_Block()
=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void
GetStore(): typename t_staticStore::t_Store

t_staticStore : class

ct_Chn32Block

gct_VarItemBlockBase

o_FixSize: t_Size
o_SizeMax: t_Size

gct_VarItemBlockBase()
SetFixSize(o_fs: t_Size): void

t_block : class

gct_ItemBlock

GetRawAddr_(o_pos: t_Size): char
GetFixSize(): t_Size
GetItemSize(): t_Size
SetItemSize(o_size: t_Size): void
IncItemSize1(): void
DecItemSize1(): void
IncItemSize(o_inc: t_Size): void
DecItemSize(o_dec: t_Size): void
GetItemAddr(o_pos: t_Size): void
InsertItems(o_pos: t_Size, o_count: t_Size): void
DeleteItems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_VarItemBlock

t_block : class

gct_BlockStore

so_Data: st_Data

IdxAddrOf(o_pos: t_Position): t_Position
FreePlain(o_pos: t_Position): void
FreeSort(o_pos: t_Position): void
gct_BlockStore()
Swap(co_swap: gct_BlockStore): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
SetSortedFree(b: bool): void
SetPageSize(o_size: t_Size): void
LastIdx(): t_Position
HasFree(): bool
FreeUnused(): void

t_itemBlock : class
t_charBlock : class

ct_Chn32BlockStore

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class
t_ptr : class

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_DList()
gct_DList(co_init: gct_DList)
gct_DList()
=(co_asgn: gct_DList): gct_DList
Swap(co_swap: gct_DList): void
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
GetStore(): t_store

t_obj : class
t_store : class

gct_Chn32BlockDList

t_obj : class

ct_Any

1

*

1

1

1

1

1

*

Spirick Tuning Reference Manual Page 151

5 INSTALLATION

5.1 Installation

5.1.1 Available Platforms

The Spirick Tuning library is currently available for the following operating systems: MS Windows XP, MS
Windows 7, MS Windows 10 and Linux (x86/x86-64, kernel 2.6.32 to 6.2.0). The library can be used in
32-bit and 64-bit environments, in single-threaded or multi-threaded mode. The source code is
developed and tested for the following compilers: MS Visual C++ 8.0 (2005) to 17.0 (2022) and g++
4.4.5 to 12.2.0.

5.1.2 Dependencies

The Spirick Tuning library uses the compiler runtime system and OS dependent low-level functions. On
Linux platforms the library Pthreads is used for multithreading. There are no dependencies or
interactions to other libraries.

5.1.3 Makefiles

The source code of the Spirick Tuning library can be integrated in any existing build system. Alternatively
the Spirick makefiles can be used. These makefiles automatically detect the make utility (MS Windows:
nmake, Linux: gmake). The Spirick makefiles use the following environment variables:

TL_PROJECT_TARGETDIR: The compiler and linker target directory.
TL_COMPILER: A shortcut for the compiler version, e.g. "msc192164".
TL_RELEASE: Switch between debug and release build.
MSDEVDIR: MS Windows only: Detect the MSVC compiler.
TL_BUILD_DLL: MSVC only: Switch between _declspec (dllexport) and _declspec (dllimport).

The Spirick makefiles use the sd utility (Spirick Source Dependencies). The source code of the sd utility
is included in the Spirick Tuning library. Bootstrap method: If the sd executable is not available, use an
empty sd script file (MS Windows: sd.bat, Linux: sd.sh).

5.1.4 Global Objects

Each global store object (see above 'Global Stores') has its own global access function. The global
object is created in the first call of the access function. This technique ensures safe access to store
objects from constructors of global C++ objects. A global store object may be created directly by a
global Create function.

Global store objects are not destroyed automatically during program termination. This technique ensures
safe access to store objects from destructors of global C++ objects. The destruction of global store
objects is not necessary. They manage raw memory blocks, and this memory is released by the OS
automatically. A global store object may be destroyed directly by a global Delete function.

Spirick Tuning Reference Manual Page 152

Note that a heap walker may report the global store objects as memory leaks at the end of the program.
This problem can be avoided by explicitly deleting these objects. Please ensure that a global store object
is not used after deleting it.

The file 'tuning/sys/cprocess.cpp' contains access functions for two global mutex objects (see above
'Thread Mutex' and 'Process Mutex'). These objects are created in the first call of the access functions
or before starting the first thread. At the end of the program the global mutex objects can be destroyed
by calling a global Delete function.

5.1.5 Exception Handling

Exception handling can be enabled or disabled by compiler options. In some C++ projects exception
handling is disabled to improve performance. The Spirick Tuning library can be used with or without
exception handling. All functions return true on success and false or an error code on failure, no
exceptions are thrown.

While working with containers, exceptions may occur inside of constructors and destructors of
contained objects. Spirick container classes contain minimal exception handlers. These handlers ensure
the consistency of the container object and pass the exception unchanged to a higher-level handler (see
above 'Container Interface').

Spirick Tuning Reference Manual Page 153

Index
A

AbortFind..135
Acquire...103, 107
AddKeyAndValPtr....................................79
AddKeyAndValPtrCond.............................79
AddKeyAndValue.....................................76
AddKeyAndValueCond..............................76
AddObj...44
AddObjAfter..44
AddObjAfterLast......................................48
AddObjAfterLastCond...............................63
AddObjAfterNth.......................................48
AddObjBefore..44
AddObjBeforeFirst....................................48
AddObjBeforeFirstCond.............................63
AddObjBeforeNth.....................................48
AddObjCond..63
AddPtr..67
AddPtrAfter...67
AddPtrAfterLast.......................................67
AddPtrAfterLastCond................................69
AddPtrAfterNth..67
AddPtrBefore...67
AddPtrBeforeFirst.....................................67
AddPtrBeforeFirstCond.............................69
AddPtrBeforeNth......................................67
AddPtrCond...69
AddRefAfterLastCond...............................73
AddRefBeforeFirstCond.............................73
AddRefCond..73
AddrOf...11
AlignPageSize..............................26, 28, 30
Alloc...11
AllocData..31, 39
AllocPtr...31
Append...118
AppendChars...26
AppendF...120
AppendItems...28
AppendObj..44
AppendPath...127
ARRAY_DCLS..51
Assign..118
AssignAsName......................................125
AssignAsPath..125
AssignChars..26
AssignF...120

B
Before...55
BLOCK_DCLS..31
BLOCK_DLIST_DCLS................................59
BLOCK_STORE_DCLS...............................33
BLOCKPTR_DLIST_DCLS...........................84
BLOCKREF_DLIST_DCLS...........................61
BLOCKREF_STORE_DCLS..........................37
BLOCKREFPTR_DLIST_DCLS.....................85

C
CanFreeAll..11
Clear.....................................118, 138, 141
Close.............................105, 107, 108, 131
co_AttrArchive.......................................133
co_AttrDirectory....................................133
co_AttrHidden..133
co_AttrReadOnly....................................133
co_AttrSystem.......................................134
co_DayFactor..99
co_HourFactor...99
co_InvalidFileId......................................109
co_MicroSecondFactor.............................99
co_MilliSecondFactor................................99
co_MinuteFactor......................................99
co_SecondFactor.....................................99
COLLMAP_DCL..91
COLLMAP_DEF..92
CompressPath..127
CompSubStr..117
CompTo..118
ContainsKey......................................75, 78
ContainsObj...63
ContainsPtr...68
ContainsRef...72
Convert...121
Copy..131
CopyDriveFrom......................................127
CopyDrivePathFrom................................127
CopyExtFrom...127
CopyNameExtFrom.................................127
CopyNameFrom.....................................127
CopyPathFrom.......................................127
CountKeys...75, 78
CountObjs...63
CountPtrs..68
CountRefs...72
Create............105, 107, 108, 131, 133, 141
CreateChnStore.......................................17
CreateRndStore.......................................15
CreateStdStore..14
ct_AnyBlock..18
ct_AnyStore..10
ct_Array..92
ct_BlockDList...92
ct_BlockRefDList......................................92
ct_Chn_[W]String...................................122
ct_Chn_Block...32
ct_Chn_BlockRefStore..............................38
ct_Chn_BlockStore...................................34
ct_Chn_RefStore......................................37
ct_Chn_Store...17
ct_Chn16Block..32
ct_Chn16BlockRefStore............................38
ct_Chn16BlockStore.................................34
ct_Chn16RefStore....................................37

Spirick Tuning Reference Manual Page 154

ct_Chn16Store..17
ct_Chn32Block..32
ct_Chn32BlockRefStore............................38
ct_Chn32BlockStore.................................34
ct_Chn32RefStore....................................37
ct_Chn32Store..17
ct_Chn8Block..32
ct_Chn8BlockRefStore..............................38
ct_Chn8BlockStore...................................34
ct_Chn8RefStore......................................37
ct_Chn8Store..17
ct_ChnStore..15
ct_Collection...88
ct_Directory...132
ct_DirScan...134
ct_DList..92
ct_File...129, 130
ct_FileName...................................123, 125
ct_MD5...139
ct_Object..87
ct_PackStore...39
ct_PackStoreBase....................................38
ct_PageBlock...30
ct_PageBlockBase....................................29
ct_PrMutex..105
ct_PrSemaphore.............................106, 107
ct_RefCollection.......................................91
ct_RefCount..34
ct_RefDList...92
ct_Rnd_[W]String...................................122
ct_Rnd_Block...31
ct_Rnd_BlockRefStore..............................38
ct_Rnd_BlockStore...................................34
ct_Rnd_RefStore......................................37
ct_Rnd_Store...15
ct_Rnd16Block..31
ct_Rnd16BlockRefStore............................38
ct_Rnd16BlockStore.................................34
ct_Rnd16RefStore....................................37
ct_Rnd16Store...15
ct_Rnd32Block..31
ct_Rnd32BlockRefStore............................38
ct_Rnd32BlockStore.................................34
ct_Rnd32RefStore....................................37
ct_Rnd32Store...15
ct_Rnd8Block..31
ct_Rnd8BlockRefStore..............................38
ct_Rnd8BlockStore...................................34
ct_Rnd8RefStore......................................37
ct_Rnd8Store..15
ct_RndStore..14
ct_SharedMemory..................................108
ct_SharedResource.................................104
ct_SortedArray..92
ct_Std_[W]String....................................122
ct_Std_Block...31
ct_Std_BlockRefStore...............................38
ct_Std_BlockStore....................................34
ct_Std_RefStore.......................................37
ct_Std_Store...14

ct_Std16Block...31
ct_Std16BlockRefStore.............................38
ct_Std16BlockStore..................................34
ct_Std16RefStore....................................37
ct_Std16Store...14
ct_Std32Block...31
ct_Std32BlockRefStore.............................38
ct_Std32BlockStore..................................34
ct_Std32RefStore....................................37
ct_Std32Store...14
ct_Std8Block...31
ct_Std8BlockRefStore...............................38
ct_Std8BlockStore...................................34
ct_Std8RefStore......................................37
ct_Std8Store...14
ct_StdStore...13
ct_String...123
ct_StringSort...128
ct_ThMutex...102
ct_ThSemaphore....................................103
ct_TimeDate..................................137, 138
ct_UInt32Sort..129
ct_UUID..140
ct_WString..123
cu_HashPrime1..57
cu_HashPrime16......................................57
cu_HashPrime2..57
cu_HashPrime4..57
cu_HashPrime8..57

D
DecCharSize..25
DecItemSize..27
DecItemSize1..27
DecRef..35, 36, 60
DelAll...44
DelAllKey..79
DelAllKeyAndValue.............................76, 80
DelAllPtr...68
DelAllPtrAndObj.......................................68
Delete...................................119, 131, 133
DeleteChars...26
DeleteChnStore..17
DeleteItems...28
DeleteRev..119
DeleteRndStore..15
DeleteStdStore..14
DelFirstEqualObj.......................................64
DelFirstEqualObjCond...............................64
DelFirstEqualPtr.......................................69
DelFirstEqualPtrAndObj.............................69
DelFirstEqualPtrAndObjCond......................70
DelFirstEqualPtrCond................................69
DelFirstEqualRef.......................................73
DelFirstEqualRefAndObj............................74
DelFirstEqualRefAndObjCond.....................74
DelFirstEqualRefCond...............................73
DelFirstKey..80
DelFirstKeyAndValue..........................76, 80
DelFirstKeyAndValueCond...................77, 80
DelFirstKeyCond......................................80

Spirick Tuning Reference Manual Page 155

DelFirstObj..49
DelFirstPtr...67
DelFirstPtrAndObj.....................................68
DelKey..79
DelKeyAndValue................................76, 80
DelLastEqualObj.......................................64
DelLastEqualObjCond...............................64
DelLastEqualPtr..69
DelLastEqualPtrAndObj.............................70
DelLastEqualPtrAndObjCond......................70
DelLastEqualPtrCond................................69
DelLastEqualRef.......................................73
DelLastEqualRefAndObj............................74
DelLastEqualRefAndObjCond.....................74
DelLastEqualRefCond...............................73
DelLastKey..80
DelLastKeyAndValue..........................76, 80
DelLastKeyAndValueCond...................77, 80
DelLastKeyCond.......................................80
DelLastObj..49
DelLastPtr...67
DelLastPtrAndObj.....................................68
DelNextObj..49
DelNextPtr...67
DelNextPtrAndObj....................................68
DelNthObj...49
DelNthPtr..68
DelNthPtrAndObj......................................68
DelObj..44
DelPrevObj..49
DelPrevPtr...68
DelPrevPtrAndObj.....................................68
DelPtr...67
DelPtrAndObj...68
DLIST_DCLS..53

E
EndOfFile..131
et_Compiler...111
et_ResError..93
et_System...112
et_UtfError..96
Exists..131, 133

F
FillChars..26
Finalize...139
FindFirst..135
FindFirstDirectory...................................135
FindFirstFile...135
FindNext...135
FindNextDirectory..................................135
FindNextFile..135
FindOnce...135
FindOncePath..135
First..43, 98, 117
Found...135
Free..11
FreeAll..11, 44
FreeData...31, 39
FreeFirstObj...49
FreeLastObj...50

FreeNextObj..50
FreeNthObj..50
FreeObj...44
FreePrevObj...50
FreeUnused.......................................17, 33
FromStr...141
ft_ThreadFunc.......................................101

G
gct_AnyContainer...............................41, 42
gct_Array..50
gct_Block..20
gct_BlockBase...19
gct_BlockStore..32
gct_CharBlock...25
gct_Chn_Array...52
gct_Chn_BlockDList..................................59
gct_Chn_BlockPtrDList..............................84
gct_Chn_BlockRefDList.............................62
gct_Chn_BlockRefPtrDList.........................86
gct_Chn_DList...54
gct_Chn_HashTable..................................58
gct_Chn_PtrArray.....................................81
gct_Chn_PtrDList.....................................82
gct_Chn_PtrHashTable..............................83
gct_Chn_PtrSortedArray............................83
gct_Chn_RefDList.....................................61
gct_Chn_RefPtrDList.................................85
gct_Chn_SortedArray................................56
gct_Chn16Array.......................................52
gct_Chn16BlockDList...............................59
gct_Chn16BlockPtrDList...........................84
gct_Chn16BlockRefDList...........................62
gct_Chn16BlockRefPtrDList.......................86
gct_Chn16DList.......................................54
gct_Chn16HashTable...............................58
gct_Chn16PtrArray...................................81
gct_Chn16PtrDList...................................82
gct_Chn16PtrHashTable............................83
gct_Chn16PtrSortedArray.........................83
gct_Chn16RefDList..................................61
gct_Chn16RefPtrDList..............................85
gct_Chn16SortedArray.............................56
gct_Chn32Array.......................................52
gct_Chn32BlockDList...............................59
gct_Chn32BlockPtrDList...........................84
gct_Chn32BlockRefDList...........................62
gct_Chn32BlockRefPtrDList.......................86
gct_Chn32DList.......................................54
gct_Chn32HashTable...............................58
gct_Chn32PtrArray...................................81
gct_Chn32PtrDList...................................82
gct_Chn32PtrHashTable............................83
gct_Chn32PtrSortedArray.........................83
gct_Chn32RefDList..................................61
gct_Chn32RefPtrDList..............................85
gct_Chn32SortedArray.............................56
gct_Chn8Array..52
gct_Chn8BlockDList.................................59
gct_Chn8BlockPtrDList.............................84
gct_Chn8BlockRefDList.............................62

Spirick Tuning Reference Manual Page 156

gct_Chn8BlockRefPtrDList.........................86
gct_Chn8DList...54
gct_Chn8HashTable.................................58
gct_Chn8PtrArray.....................................81
gct_Chn8PtrDList.....................................82
gct_Chn8PtrHashTable.............................83
gct_Chn8PtrSortedArray...........................83
gct_Chn8RefDList....................................61
gct_Chn8RefPtrDList................................85
gct_Chn8SortedArray...............................56
gct_CompContainer..................................62
gct_DList..52
gct_EmptyBaseBlock................................20
gct_EmptyBaseMiniBlock..........................22
gct_EmptyBaseResBlock...........................23
gct_ExtContainer......................................47
gct_FixBlock..24
gct_FixItemArray......................................51
gct_FixItemBlock......................................28
gct_FixItemSortedArray............................55
gct_HashTable...57
gct_ItemBlock..27
gct_Map...74
gct_MiniBlock..21
gct_MiniBlockBase...................................21
gct_NullDataBlock....................................24
gct_ObjectBaseBlock................................20
gct_ObjectBaseMiniBlock..........................22
gct_ObjectBaseResBlock...........................23
gct_PackStore...40
gct_PtrCompContainer..............................72
gct_PtrContainer......................................65
gct_PtrMap..77
gct_RefDList..59
gct_RefStore...35
gct_ResBlock...23
gct_ResBlockBase....................................22
gct_Rnd_Array...52
gct_Rnd_BlockDList..................................59
gct_Rnd_BlockPtrDList..............................84
gct_Rnd_BlockRefDList.............................62
gct_Rnd_BlockRefPtrDList.........................86
gct_Rnd_DList...53
gct_Rnd_HashTable..................................58
gct_Rnd_PtrArray.....................................81
gct_Rnd_PtrDList.....................................82
gct_Rnd_PtrHashTable..............................83
gct_Rnd_PtrSortedArray............................83
gct_Rnd_RefDList.....................................61
gct_Rnd_RefPtrDList.................................85
gct_Rnd_SortedArray................................56
gct_Rnd16Array.......................................52
gct_Rnd16BlockDList................................59
gct_Rnd16BlockPtrDList............................84
gct_Rnd16BlockRefDList...........................62
gct_Rnd16BlockRefPtrDList.......................86
gct_Rnd16DList.......................................53
gct_Rnd16HashTable................................58
gct_Rnd16PtrArray...................................81
gct_Rnd16PtrDList...................................82

gct_Rnd16PtrHashTable............................83
gct_Rnd16PtrSortedArray.........................83
gct_Rnd16RefDList..................................61
gct_Rnd16RefPtrDList..............................85
gct_Rnd16SortedArray.............................56
gct_Rnd32Array.......................................52
gct_Rnd32BlockDList................................59
gct_Rnd32BlockPtrDList............................84
gct_Rnd32BlockRefDList...........................62
gct_Rnd32BlockRefPtrDList.......................86
gct_Rnd32DList.......................................53
gct_Rnd32HashTable................................58
gct_Rnd32PtrArray...................................81
gct_Rnd32PtrDList...................................82
gct_Rnd32PtrHashTable............................83
gct_Rnd32PtrSortedArray.........................83
gct_Rnd32RefDList..................................61
gct_Rnd32RefPtrDList..............................85
gct_Rnd32SortedArray.............................56
gct_Rnd8Array...52
gct_Rnd8BlockDList.................................59
gct_Rnd8BlockPtrDList.............................84
gct_Rnd8BlockRefDList.............................62
gct_Rnd8BlockRefPtrDList.........................86
gct_Rnd8DList...53
gct_Rnd8HashTable..................................58
gct_Rnd8PtrArray.....................................81
gct_Rnd8PtrDList.....................................82
gct_Rnd8PtrHashTable..............................83
gct_Rnd8PtrSortedArray...........................83
gct_Rnd8RefDList....................................61
gct_Rnd8RefPtrDList................................85
gct_Rnd8SortedArray...............................56
gct_SortedArray.......................................54
gct_Std_Array..52
gct_Std_BlockDList..................................59
gct_Std_BlockPtrDList..............................84
gct_Std_BlockRefDList..............................61
gct_Std_BlockRefPtrDList..........................85
gct_Std_DList..53
gct_Std_HashTable...................................58
gct_Std_PtrArray......................................81
gct_Std_PtrDList......................................82
gct_Std_PtrHashTable...............................83
gct_Std_PtrSortedArray............................82
gct_Std_RefDList.....................................61
gct_Std_RefPtrDList.................................85
gct_Std_SortedArray................................56
gct_Std16Array.......................................52
gct_Std16BlockDList................................59
gct_Std16BlockPtrDList............................84
gct_Std16BlockRefDList...........................61
gct_Std16BlockRefPtrDList.......................85
gct_Std16DList..53
gct_Std16HashTable................................58
gct_Std16PtrArray...................................81
gct_Std16PtrDList....................................82
gct_Std16PtrHashTable............................83
gct_Std16PtrSortedArray..........................82
gct_Std16RefDList...................................61

Spirick Tuning Reference Manual Page 157

gct_Std16RefPtrDList...............................85
gct_Std16SortedArray..............................56
gct_Std32Array.......................................52
gct_Std32BlockDList................................59
gct_Std32BlockPtrDList............................84
gct_Std32BlockRefDList...........................61
gct_Std32BlockRefPtrDList.......................85
gct_Std32DList..53
gct_Std32HashTable................................58
gct_Std32PtrArray...................................81
gct_Std32PtrDList....................................82
gct_Std32PtrHashTable............................83
gct_Std32PtrSortedArray..........................82
gct_Std32RefDList...................................61
gct_Std32RefPtrDList...............................85
gct_Std32SortedArray..............................56
gct_Std8Array...52
gct_Std8BlockDList..................................59
gct_Std8BlockPtrDList..............................84
gct_Std8BlockRefDList.............................61
gct_Std8BlockRefPtrDList.........................85
gct_Std8DList..53
gct_Std8HashTable..................................58
gct_Std8PtrArray.....................................81
gct_Std8PtrDList......................................82
gct_Std8PtrHashTable..............................83
gct_Std8PtrSortedArray............................82
gct_Std8RefDList.....................................61
gct_Std8RefPtrDList.................................85
gct_Std8SortedArray................................56
gct_String...113
gct_UtfCit...97
gct_VarItemBlock.....................................28
GetAddr..19
GetAllLen..126
GetAllocByteSize.....................................23
GetAllStr...126
GetAttributes...136
GetByteSize...19
GetChar..98, 116
GetCharAddr...26
GetCharPos...98
GetCharSize..25
GetChnStore..17
GetCreationTime....................................135
GetData..108
GetDay...138
GetDayOfWeek......................................138
GetDefaultPageSize......................26, 28, 30
GetDotLen...126
GetDrive..126
GetDriveLen..126
GetDriveOffs...126
GetDrivePath...126
GetDrivePathLen....................................126
GetDriveStr...126
GetEntries...16
GetError..98
GetExt..126
GetExtLen...126

GetExtOffs..126
GetExtStr..126
GetFirstEqualObj......................................63
GetFirstEqualRef......................................73
GetFirstObj..47
GetFirstPtr...66
GetFirstValPtr..79
GetFirstValue...76
GetFixPagePtrs..30
GetFixSize...27
GetHash..................................88, 116, 140
GetHashSize..57
GetHour..138
GetInitSuccess.......................102, 103, 104
GetItemAddr..28
GetItemSize...27
GetKey......................................75, 79, 104
GetLastAccessTime................................135
GetLastEqualObj......................................63
GetLastEqualRef......................................73
GetLastObj..47
GetLastPtr...66
GetLastValPtr..79
GetLastValue...76
GetLastWriteTime..................................136
GetLen..43, 116
GetMaxByteSize.......................................19
GetMaxChainExp.....................................16
GetMaxCharSize......................................25
GetMaxItemSize.......................................27
GetMaxLen................................51, 55, 116
GetMicroSecond....................................138
GetMinByteSize.......................................23
GetMinute...138
GetMonth..138
GetName...126
GetNameExt..126
GetNameExtLen.....................................126
GetNameLen..126
GetNameOffs...126
GetNameStr...126
GetNewFirstObj.......................................48
GetNewLastObj..48
GetNewObj...48
GetNewObjAfter......................................49
GetNewObjAfterNth.................................49
GetNewObjBefore....................................48
GetNewObjBeforeNth...............................49
GetNextObj...48
GetNextPtr..66
GetNthObj...48
GetNthPtr..66
GetObj..43
GetPageSize..30
GetPath..126
GetPathLen...126
GetPathOffs..126
GetPathStr..126
GetPrevObj..48
GetPrevPtr...66

Spirick Tuning Reference Manual Page 158

GetPtr...66
GetPureDrivePath...................................126
GetPureDrivePathLen..............................126
GetPurePath..126
GetPurePathLen.....................................126
GetRawAddr..26
GetRawLen...98
GetRawPos...98
GetRef..35, 36, 60
GetResult..139
GetResultStr..139
GetRevChar...116
GetRndStore..15
GetRoundedSize.......................................30
GetSecond..138
GetSize...................................16, 108, 136
GetStdStore..14
GetStore...36
GetStr...116
GetTime..138
GetUUID...140
GetValPtr..79
GetValue...75
GetYear..138
GLOBAL_STORE_DCLS.............................12
GLOBAL_STORE_DEFS.............................12

H
HasDot...126
HasDrive...126
HasDriveOrUNC.....................................126
HasExt..126
HasFree..33
HASHTABLE_DCLS..................................58
HasName..126
HasPath..126
HasUNC..126
HasWildCards..126

I
IncCharSize...25
IncItemSize...27
IncItemSize1..27
IncRef...35, 36, 60
Init...39, 40
Initialize..35
Insert..119
InsertChars..26
InsertDrivePath......................................127
InsertF..120
InsertItems..28
InsertPath..127
IsAbs..127
IsAlloc...35, 36, 60
IsArchive...136
IsDirectory...136
IsEmpty...................................43, 116, 140
IsFree..35, 36, 60
IsHidden..136
IsNull..35
IsReadOnly..136
IsRel...127

IsSystem...136
L

Last..43, 117
LastIdx...33
LastPageError..30
LastPageWarning.....................................30
Load...131
Lock...102, 106

M
MaxAlloc...11
MaxDataAlloc..39
MbConvert..121
Move..131, 133

N
Next...43, 98
Nth...43

O
Open.............................105, 107, 108, 130
operator !=............................121, 139, 141
operator ()...116
operator []...116
operator +..121
operator +=...121
operator <.......................88, 121, 123, 139
operator <=.................................121, 139
operator = 18, 43, 121, 125, 130, 132, 134,
140
operator ==..................121, 139, 140, 141
operator >....................................121, 139
operator >=.................................121, 139
operator delete..17
operator delete [].....................................17
operator new...17
operator new []..17

P
PosOf...11
Prev...43
PTR_ARRAY_DCLS...................................81
PTR_DLIST_DCLS.....................................81
PTR_HASHTABLE_DCLS...........................83
PTR_SORTEDARRAY_DCLS.......................82

Q
QueryAllocEntries.....................................17
QueryAllocSize..17
QueryCurrentDirectory............................133
QueryCurrentDrive..................................132
QueryCurrentDriveDirectory.....................133
QueryFreeEntries......................................17
QueryFreeSize...17
QueryLocalTime.....................................138
QueryPos..131
QuerySize..131
QueryUTCTime......................................138

R
Read...131
Ready...98
Realloc..11
ReallocPtr..31, 39
REF_DLIST_DCLS.....................................60
REF_STORE_DCLS...................................37

Spirick Tuning Reference Manual Page 159

REFPTR_DLIST_DCLS...............................84
Release...103, 107
Replace...119
ReplaceAll...120
ReplaceChars...26
ReplaceF...120
RevSubStr...116
RoundedSizeOf..11

S
Save...131
SearchFirstKey...................................75, 78
SearchFirstObj...63
SearchFirstPtr..69
SearchFirstRef...72
SearchLastKey...................................75, 78
SearchLastObj...63
SearchLastPtr..69
SearchLastRef...72
SearchNextKey..................................75, 78
SearchNextObj...63
SearchNextPtr...69
SearchNextRef...72
SearchPrevKey...................................75, 79
SearchPrevObj...63
SearchPrevPtr..69
SearchPrevRef...72
SeekAbs...131
SeekRel...131
SetAlloc..35
SetByteSize...19
SetCharSize...25
SetDay..138
SetDayOfWeek......................................138
SetDrive..127
SetDrivePath...127
SetExt..127
SetFixPagePtrs...30
SetFree...35
SetHashSize..57
SetHour..138
SetItemSize...27
SetKey..104
SetMaxChainExp......................................16
SetMicroSecond.....................................138
SetMinByteSize..23
SetMinute...138
SetMonth..138
SetName...127
SetNameExt..127
SetPageSize.................................33, 51, 55
SetPath...127
SetSecond...138
SetSortedFree..33
SetTime..138
SetYear...138
SizeOf..11
Sort..129
SORTEDARRAY_DCLS..............................55
st_BatteryInfo..112
st_CompilerInfo......................................111

st_FileSystemInfo...................................111
st_HardwareInfo.....................................111
st_HeapInfo...8
st_ProcessMemoryInfo............................111
st_SystemInfo..112
st_UserKernelTime..................................100
StoreInfoSize...11
STRING_DCL...122
SubStr..116
Swap..11, 19, 43

T
t_FileAttributes......................................133
t_FileId..109
t_FileSize...109
t_Int...6
t_Int16...6
t_Int32...6
t_Int8...6
t_Key..75, 78
t_Length...42
t_MD5Result..139
t_MicroTime..99
t_Object..42
t_Position..10, 42
t_RefCount..34
t_RefObject...66
t_Size..10, 18, 115
t_UInt...6
t_UInt16...6
t_UInt32...6
t_UInt8...6
t_UUID..140
t_Value...75, 78
tl_Alloc...7
tl_AllocReserve..7
tl_BeginThread.......................................101
tl_CloseFile..109
tl_CompareChar...9
tl_CompareMemory....................................9
tl_CopyFile..109
tl_CopyMemory...9
tl_CreateDirectory..................................110
tl_CreateFile..109
tl_CriticalPrSectionInitSuccess.................106
tl_CriticalSectionInitSuccess....................102
tl_Delay...100
tl_DeleteCriticalPrSection........................106
tl_DeleteCriticalSection...........................102
tl_DeleteDirectory...................................110
tl_DeleteFile...109
tl_EndProcess..101
tl_EndThread...101
tl_EnterCriticalPrSection..........................106
tl_EnterCriticalSection.............................102
tl_Exec..101
tl_ExistsFile...109
tl_FillMemory...9
tl_FirstChar..9
tl_FirstMemory...9
tl_Free..8

Spirick Tuning Reference Manual Page 160

tl_FreeReserve...7
tl_FreeUnused..8
tl_GetEnv..100
tl_GetReserveSize......................................7
tl_GetTempPath.....................................100
tl_HasReserve..7
tl_InterlockedAdd...................................100
tl_InterlockedDecrement..........................100
tl_InterlockedIncrement...........................100
tl_InterlockedRead..................................100
tl_InterlockedWrite.................................100
tl_IsProcessRunning................................101
tl_LastChar..9
tl_LastMemory...9
tl_LeaveCriticalPrSection.........................106
tl_LeaveCriticalSection............................103
tl_LocalToUTCTime..................................99
tl_MaxAlloc...7
tl_MbConvert...95
tl_MbConvertCount..................................95
tl_MoveDirectory....................................110
tl_MoveFile..109
tl_MoveMemory...9
tl_OpenFile..109
tl_ProcessId...101
tl_QueryBatteryInfo................................113
tl_QueryCompilerInfo..............................112
tl_QueryCurrentDirectory.........................110
tl_QueryFileSystemInfo...........................112
tl_QueryHardwareInfo.............................112
tl_QueryHeapInfo.......................................8
tl_QueryLocalTime....................................99
tl_QueryPos...109
tl_QueryPrecisionTime..............................99
tl_QueryProcessMemoryInfo....................112
tl_QueryProcessTimes.............................100
tl_QuerySize..109
tl_QuerySystemInfo................................113
tl_QueryThreadTimes..............................100
tl_QueryUTCTime.....................................99
tl_Read...110
tl_Realloc..8
tl_RelinquishTimeSlice.............................100
tl_SeekAbs..110
tl_SeekRel...110
tl_SetOverflowHandler..........................7, 30
tl_SetReserveHandler..................................7
tl_SetReserveSize.......................................7
tl_StoreInfoSize...7
tl_StringHash...95
tl_StringLength..95

tl_SwapMemory...9
tl_SwapObj...9
tl_ThreadId..101
tl_ToLower..95
tl_ToLower2..95
tl_ToUpper..94
tl_ToUpper2..95
tl_Truncate..110
tl_TryEnterCriticalPrSection.....................106
tl_TryEnterCriticalSection........................102
tl_UTCToLocalTime..................................99
tl_UtfConvert...97
tl_UtfConvertCount..................................97
tl_UtfLength..97
tl_UtfToLower...97
tl_UtfToUpper..97
tl_VSprintf...128
tl_Write...110
ToAbs...127
ToLower...120
ToLower2..120
ToRel..128
ToStr..141
ToUpper..120
ToUpper2..120
tpf_AllocHandler..7
Truncate...131
TruncateObj..44
TryAcquire.....................................103, 107
TryLock...102, 105
TryOpen..130

U
Unlock..102, 106
Update..139

W
Write..131
WSTRING_DCL......................................122

~
~ct_AnyBlock...18
~ct_DirScan..134
~ct_File..130
~ct_Object...88
~ct_PackStore..39
~ct_PageBlock..31
~ct_PrMutex...105
~ct_PrSemaphore..................................107
~ct_SharedMemory...............................108
~ct_SharedResource..............................104
~gct_AnyContainer.................................43
~gct_PtrContainer...................................66

Spirick Tuning Reference Manual Page 161

	1 MEMORY MANAGEMENT
	1.1 System Interface
	1.1.1 Global Definitions (tuning/defs.hpp)
	1.1.2 Reserve Memory (tuning/sys/calloc.hpp)
	1.1.3 Dynamic Memory (tuning/sys/calloc.hpp)
	1.1.4 Heap Operations (tuning/sys/calloc.hpp)
	1.1.5 Memory Operations (tuning/sys/cmemory.hpp)

	1.2 Store
	1.2.1 Store Interface
	1.2.2 Global Stores (tuning/defs.hpp)
	1.2.3 Wrapper Class Example

	1.3 Dynamic Stores
	1.3.1 Standard Store (tuning/std/store.hpp)
	1.3.2 Round Store (tuning/rnd/store.hpp)
	1.3.3 Chain Store (tuning/chn/store.hpp)
	1.3.4 Global new and delete operators (tuning/newdel.cpp)

	1.4 Block
	1.4.1 Block Interface
	1.4.2 Simple Block (tuning/block.h)
	1.4.3 Mini Block (tuning/miniblock.h)
	1.4.4 Reserve Block (tuning/resblock.h)
	1.4.5 Fixed Sized Block (tuning/fixblock.h)
	1.4.6 Null Data Block (tuning/nulldatablock.h)
	1.4.7 Character Block (tuning/charblock.h)
	1.4.8 Item Block (tuning/itemblock.h)
	1.4.9 Page Block (tuning/pageblock.hpp)
	1.4.10 Block Instances (tuning/xxx/block.h)

	1.5 Special Stores
	1.5.1 Block Store (tuning/blockstore.h)
	1.5.2 Block Store Instances (tuning/xxx/blockstore.h)
	1.5.3 Reference Counter (tuning/refcount.hpp)
	1.5.4 Ref-Store (tuning/refstore.h)
	1.5.5 Ref-Store Instances (tuning/xxx/refstore.h)
	1.5.6 Block-Ref-Store Instances (tuning/xxx/blockrefstore.h)
	1.5.7 Pack Store (tuning/packstore.hpp)
	1.5.8 Pack Store 2 (tuning/packstore.h)

	2 OBJECT MANAGEMENT
	2.1 Container
	2.1.1 Container Interface
	2.1.2 Container Operations
	2.1.3 Extended Container (tuning/extcont.h)

	2.2 Array and List Containers
	2.2.1 Array Containers (tuning/array.h)
	2.2.2 Array Instances (tuning/xxx/array.h)
	2.2.3 List Containers (tuning/dlist.h)
	2.2.4 List Instances (tuning/xxx/dlist.h)

	2.3 Sorted Containers
	2.3.1 Sorted Arrays (tuning/sortarr.h)
	2.3.2 Sorted Array Instances (tuning/xxx/sortedarray.h)
	2.3.3 Hash Tables (tuning/hashtable.h)
	2.3.4 Hash Table Instances (tuning/xxx/hashtable.h)

	2.4 Block and Ref Lists
	2.4.1 Block Lists
	2.4.2 Block List Instances (tuning/xxx/blockdlist.h)
	2.4.3 Ref-Lists (tuning/refdlist.h)
	2.4.4 Ref-List Instances (tuning/xxx/refdlist.h)
	2.4.5 Block-Ref-List Instances (tuning/xxx/blockrefdlist.h)

	2.5 Comp, Pointer and Map Containers
	2.5.1 Comp-Containers (tuning/compcontainer.h)
	2.5.2 Pointer Containers (tuning/ptrcontainer.h)
	2.5.3 Pointer Container Operations
	2.5.4 Pointer-Comp-Containers (tuning/ptrcompcontainer.h)
	2.5.5 Map Containers (tuning/map.h)
	2.5.6 Pointer Map Containers (tuning/ptrmap.h)

	2.6 Pointer Container Instances
	2.6.1 Pointer Array Instances (tuning/xxx/ptrarray.h)
	2.6.2 Pointer List Instances (tuning/xxx/ptrdlist.h)
	2.6.3 Pointer Sorted Array Instances (tuning/xxx/ptrsortedarray.h)
	2.6.4 Pointer Hash Table Instances (tuning/xxx/ptrhashtable.h)
	2.6.5 Block Pointer List Instances (tuning/xxx/blockptrdlist.h)
	2.6.6 Ref Pointer List Instances (tuning/xxx/refptrdlist.h)
	2.6.7 Block-Ref Pointer List Instances (tuning/xxx/blockrefptrdlist.h)

	2.7 Overview of Container Instances
	2.7.1 Predefined Template Instances
	2.7.2 User Defined Container Templates

	2.8 Collections
	2.8.1 Abstract Object (tuning/object.hpp)
	2.8.2 Abstract Collection (tuning/collection.hpp)
	2.8.3 Collection Operations
	2.8.4 Abstract Ref-Collection (tuning/refcollection.hpp)
	2.8.5 Predefined Collections

	3 STRINGS AND UTILITIES
	3.1 System Interface
	3.1.1 Resource Errors (tuning/sys/creserror.hpp)
	3.1.2 Character and String Conversion (tuning/sys/cstring.hpp)
	3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)
	3.1.4 Unicode Const Iterator (tuning/utfcit.h)
	3.1.5 Precision Time (tuning/sys/ctimedate.hpp)
	3.1.6 Time and Date (tuning/sys/ctimedate.hpp)
	3.1.7 CPU Time (tuning/sys/ctimedate.hpp)
	3.1.8 Thread Utilities (tuning/sys/cprocess.hpp)
	3.1.9 Threads (tuning/sys/cthread.hpp)
	3.1.10 Processes (tuning/sys/cprocess.hpp)
	3.1.11 Thread Mutex (tuning/sys/cthmutex.hpp)
	3.1.12 Thread Semaphore (tuning/sys/cthsemaphore.hpp)
	3.1.13 Shared Resource (tuning/sys/csharedres.hpp)
	3.1.14 Process Mutex (tuning/sys/cprmutex.hpp)
	3.1.15 Process Semaphore (tuning/sys/cprsemaphore.hpp)
	3.1.16 Shared Memory (tuning/sys/csharedmem.hpp)
	3.1.17 File I/O (tuning/sys/cfile.hpp)
	3.1.18 Directory (tuning/sys/cdir.hpp)
	3.1.19 System-Related Information (tuning/sys/cinfo.hpp)

	3.2 Strings and Filenames
	3.2.1 String Template (tuning/string.h)
	3.2.2 String Instances (tuning/xxx/[w]string.h)
	3.2.3 Polymorphic String Classes (tuning/[w]string.hpp)
	3.2.4 Filename (tuning/filename.hpp)
	3.2.5 Formatted Strings (tuning/printf.hpp)
	3.2.6 String Sort Algorithm (tuning/stringsort.hpp)
	3.2.7 Number Sort Algorithm (tuning/stringsort.hpp)

	3.3 Files and Directories
	3.3.1 Files (tuning/file.hpp)
	3.3.2 Directories (tuning/dir.hpp)
	3.3.3 Directory Scan (tuning/dirscan.hpp)

	3.4 Additional Utilities
	3.4.1 Time and Date (tuning/timedate.hpp)
	3.4.2 MD5 Sum (tuning/md5.hpp)
	3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

	4 DESIGN DIAGRAMS
	4.1 Notation
	4.2 Polymorphic Class Hierarchy
	4.3 An Array Container
	4.4 A Pointer Array Container
	4.5 A List Container
	4.6 A Block List Container

	5 INSTALLATION
	5.1 Installation
	5.1.1 Available Platforms
	5.1.2 Dependencies
	5.1.3 Makefiles
	5.1.4 Global Objects
	5.1.5 Exception Handling

